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Abstract

Background: Whole grains (WG) and fruits and vegetables (FV) have been shown to reduce the risk of metabolic
disease, possibly via modulation of the gut microbiota. The purpose of this study was to determine the impact of
increasing intake of either WG or FV on inflammatory markers and gut microbiota composition.

Methods: A randomized parallel arm feeding trial was completed on forty-nine subjects with overweight or obesity
and low intakes of FV and WG. Individuals were randomized into three groups (3 servings/d provided): WG, FV, and
a control (refined grains). Stool and blood samples were collected at the beginning of the study and after 6 weeks.
Inflammatory markers [tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), lipopolysaccharide binding protein (LBP),
and high sensitivity C-reactive protein (hs-CRP)] were measured. Stool sample analysis included short/branched
chain fatty acids (S/BCFA) and microbiota composition.

Results: There was a significant decrease in LBP for participants on the WG (− 0.2 μg/mL, p = 0.02) and FV (− 0.2 μg/mL,
p = 0.005) diets, with no change in those on the control diet (0.1 μg/mL, p = 0.08). The FV diet induced a significant
change in IL-6 (− 1.5 pg/mL, p = 0.006), but no significant change was observed for the other treatments
(control, − 0.009 pg/mL, p = 0.99; WG, − 0.29, p = 0.68). The WG diet resulted in a significant decrease in TNF-α
(− 3.7 pg/mL; p < 0.001), whereas no significant effects were found for those on the other diets (control, − 0.6 pg/mL,
p = 0.6; FV, − 1.4 pg/mL, p = 0.2). The treatments induced individualized changes in microbiota composition such that
treatment group differences were not identified, except for a significant increase in α-diversity in the FV group. The
proportions of Clostridiales (Firmicutes phylum) at baseline were correlated with the magnitude of change in LBP during
the study.
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Conclusions: These data demonstrate that WG and FV intake can have positive effects on metabolic health; however,
different markers of inflammation were reduced on each diet suggesting that the anti-inflammatory effects were
facilitated via different mechanisms. The anti-inflammatory effects were not related to changes in gut microbiota
composition during the intervention, but were correlated with microbiota composition at baseline.

Trial registration: ClinicalTrials.gov, NCT02602496, Nov 4, 2017.

Keywords: Metabolic syndrome, Gut microbiota, Interleukin-6, Lipopolysaccharide, Tumor necrosis factor-α, C-reactive
protein, Short chain fatty acids

Background
Poor diet is the leading risk factor for premature death
and disability in the United States (US) [1]. Poor diets
lead to metabolic syndrome and its associated diseases
such as heart disease and diabetes, which rank first and
seventh among common causes of death, respectively
[2]. The health care cost of treating these chronic dis-
eases is in excess of $600 billion annually [3, 4]. Conse-
quently, the government has directed considerable
policy towards promoting a healthier society, especially
to promote healthier eating [5].
There have been numerous human feeding trials showing

that consuming fruits and vegetables (FV) or whole grains
(WG) can have significant impacts on markers of metabolic
syndrome [6–14]. In a typical 2000 kcal diet, the current
recommendations from the US Department of Agriculture
are to consume 5 servings of FV and 3 servings of WG per
day [5]. Unfortunately, FV and WG intakes are typically far
below recommendations. In a 2015 report 76% of the US
population did not meet the recommended intake of fruit
and 87% did not meet the recommended vegetable intake
[15]. Over the past 5 years FV consumption has decreased
by 7% due to declines in vegetables as a side dish and con-
sumption of juice at breakfast [16]. Likewise, a 2009–2010
survey revealed that only 2.9% of children and adolescents
and 7.7% of adults in the US consumed at least 3 servings/
d of WG [17]. The typical American consumes just shy of 1
serving of WG per day [17].
The metabolic benefits of WG and FV are thought to

be mediated, at least in part, through their interactions
with the gut microbiota [18, 19]. One way that the gut
microbiota may mediate the anti-inflammatory effects of
WG and FV is through short chain fatty acid (SCFA)
production, the major metabolic end products of dietary
fiber fermentation. These acids are known to have
trophic effects locally on epithelial cell functions as well
as distally via circulation in blood [20]. For instance,
SCFA help with maintenance of gut barrier function by
increasing mucin production, inhibiting growth of en-
teric pathogens, and increasing nutrient absorption [21].
Distally, SCFA are signaling molecules for carbohydrate
and lipid metabolism. Increased SCFA are also associated
with a decreased risk for cancer and obesity [21, 22].

Human feeding trials can vary in the design of the
intervention. The most aggressive design is to control
every aspect of the diet [6, 7, 11, 19, 23, 24]. However,
this approach is not very practical as part of a long-term
dietary regimen to improve health. A less dramatic ap-
proach is to supply a test food to subjects to incorporate
into their normal diet [25–30]. This approach has some
limitations compared to controlling the whole diet, such
as compliance, but is easier to implement. Recently,
some studies have allowed subjects to choose their own
test foods from a menu consisting of foods in a particu-
lar category [12, 13, 31, 32]. While these approaches also
have limitations, such as the inability to attribute out-
comes to a particular food or nutrient, they may impart
measureable benefits while also being more practical for
subjects to continue after the study. This purpose of this
present study was to determine the impact of increasing
intake of WG or FV against the background of a typical
Western diet on inflammatory makers and gut micro-
biota composition in individuals affected by overweight
or obesity.

Methods
Study design and participants
The present study was a randomized, parallel arm feeding
trial conducted at the Food Innovation Center on the Uni-
versity of Nebraska (UNL) Innovation Campus. The UNL
Institutional Review Board approved all study protocols
(Approval Number: 20141214525FB). The study was reg-
istered on clinicaltrials.gov (NCT02602496).
Between August 2015 and February 2016, 110 individ-

uals responded to flyers advertising this trial at grocery
stores and University buildings and through social media
outlets. Individuals were screened during the initial con-
tact period to determine if they qualified for the study
and were interested in participating. Inclusion criteria
were: body mass index (BMI) > 25 kg/m2, no diagnosed
gastrointestinal diseases, no antibiotic use for 3 months,
< 1 h/week of structured exercise, and low intake of FV
and WG. BMI was calculated by measuring weight and
height (in light clothing without shoes). To verify a low
intake of FV and WG, an online food frequency
questionnaire was used [33]. The diet survey analyzed
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participants’ yearly diet and included questions about
serving size. Responses were converted to daily intake of
FV or WG using Diet*Calc software (Version 1.4.3, Be-
thesda, MD, USA) [34]. Sixty-one individuals were ex-
cluded due to low BMI, high intake of FV or WG,
regular structured exercise, recent antibiotics use, health
reasons, or scheduling conflicts. Fifty-two participants
met the inclusion criteria and were enrolled in the study.
Written informed consent was obtained from all subjects
before being enrolled in the study. Three participants
dropped out during the study due to illness or schedul-
ing conflicts. Thus, 49 individuals completed the study
(Fig. 1).
Enrolled subjects were randomized into three

groups (control, WG, and FV) using an online
randomization tool [35]. Participant code numbers
were entered into the tool where they were randomly
assigned to a group. The control group was supplied
3 servings/d of refined grain products so the study
personnel could maintain contact with the partici-
pants during the study. All subjects already consumed
at least 3 servings/d of these foods as part of their
normal diet; therefore this treatment represented min-
imal to no intervention. The serving sizes supplied to
each group were set according to the Nutrition Label-
ing and Education Act (NLEA) standards: 1 oz equiv-
alents for WG and refined grain and 1 cup
equivalents for FV [36]. Weights of 1 cup equivalents
for FV were obtained using the USDA National Nu-
trient Database [37]. For the WG treatment, 3

servings/d brought subjects up to the minimum rec-
ommendations for US adults. For the FV group, 3
servings/d was still below the recommendations of 5
servings/d for US adults; however, we chose to keep
all groups at 3 servings/d for consistency across treat-
ment groups. Participants were instructed to incorp-
orate the treatment foods into their normal diet.
Study participants visited the clinical facility 1 week

prior to beginning the study and each week during the
study. During these visits they ordered their choice of
foods from a menu consisting of a list of foods within
each treatment group (see Additional file 1). These foods
were commonly available at the local grocery store. Sub-
jects marked on the menu how many servings of each of
the foods they wanted for the following week. Subjects
could choose any combination of the foods on the list,
but were required to order at least 21 and no more than
30 servings for the week.
At each of the weekly visits during the trial period,

subjects turned in two diaries: one with a log of all test
foods eaten during the week and the other with a record
of gastrointestinal symptoms. The food diary consisted
of intake of all test foods (FV, WG, and refined grain)
and how many servings were consumed. Subjects re-
corded all test foods regardless of the treatment group
to which they were assigned. The servings from the log
were transferred to an online database that calculated
weekly amounts of FV, total grains, WG, refined grains,
and other nutrients [38]. This diary was used to assess
compliance to the dietary regimens. Additionally,

Fig. 1 Participant flow diagram of the current study
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subjects were asked to verbally indicate compliance
when they visited the facility each week.
Participants also filled out a weekly GI symptom ques-

tionnaire. Questions consisted of the frequency (number
of days per week) and severity of certain symptoms, in-
cluding stomach pains, heart burn, acid reflux, hunger
pains, nausea, rumbling stomach, bloating, burping, fla-
tus, constipation, diarrhea, loose stools, hard stools, ur-
gent bowels, and feeling of incomplete bowel emptying.
The severity was rated on a 0–4 scale (0 = no discomfort,
1 = slight, 2 =mild, 3 = moderate, and 4 = severe).

Biological sample collection
Stool and blood samples were collected at the beginning
of the study and after 6 weeks. The blood samples were
drawn using standard venipuncture techniques by expe-
rienced phlebotomists from the University of Nebraska
Medical Center. Approximately 5 mL of blood was col-
lected into each of two tubes (367,815, Vactutainer
Serum Tubes, and 367,986, Vacutainer Serum Separation
Tubes, BD, Franklin Lakes, NJ USA). After collection,
samples were left at room temperature for 15–30 min to
allow the blood to clot. The samples were then centri-
fuged (2000 x g for 10 min). Supernatant (serum) was
aliquoted into test tubes for storage at − 80 °C until
analysis.
Stool samples were collected using a commode collec-

tion kit (02–544-208, Thermo Fischer Scientific, Wal-
tham, MA USA). An insulated cooler with ice packs was
provided to keep samples cool until they could be deliv-
ered to the research center for immediate storage at −
80 °C. The samples were obtained and frozen within 2 h
of defecation.

Biological sample analysis
TNF-α and LBP were assayed from the serum recovered
from the serum tubes; IL-6 and hs-CRP were assayed
from the serum recovered from the serum separation
tubes. All analyses were carried out using commercial
ELISA kits according to the manufacturer’s instructions
(hs-CRP: HU8817; TSZ, Waltham, MA USA; TNF-α:
KHC3011, Invitrogen, Frederick, MD USA; IL-6:
HS600B, R&D Systems Minneapolis, MN USA; LBP:
0628D2100, Sigma Aldrich, St. Louis, MO USA).
For stool sample analysis, stool was first homogenized

with ice-cold, sterile phosphate buffer (1:10 w/v). Fecal
homogenates were then transferred into a 2 mL sterile
bead-beating tube containing 300 mg of 0.1-mm zirco-
nium beads, and bacterial cells were collected by centri-
fugation at room temperature at 8000 x g for 5 min. The
supernatant was used for S/BCFA analysis and the bac-
terial pellet was washed an additional two times with
PBS in preparation for bacterial DNA extraction.
S/BCFA analysis was performed as described [39].

DNA was extracted from the bacterial pellet using the
phenol:chloroform:isoamyl alcohol with bead beating
method described [14]. Following extraction, the DNA
was resuspended in 0.1 mL of tris buffer (10 mM, pH 8)
and frozen at − 80 °C until sequencing.
The V4-V5 region of the 16S rRNA gene was ampli-

fied by PCR using primers Meta_V3_F_Nextera:
(5’-CCTACGGGAGGCAGCAG-3′) and Meta_V4_806_R:
(5’-GGACTACHVGGGTWTCTAAT-3′). PCR reactions
were performed using KAPA HiFidelity Hot Start Poly-
merase. After the first round of amplification, PCR prod-
ucts were diluted 1:100 and a second PCR amplification
was performed on the diluted sample. Pooled,
size-selected sample was denatured with NaOH, diluted
with HT1 buffer (Illumina) to 8 pM, spiked with 20%
PhiX, and denatured at 96 °C for 2 min immediately prior
to loading. A MiSeq 600 cycle V3 kit was used to sequence
the sample.
Following sequencing, base sequence quality informa-

tion was confirmed by FastQC [40]. Reads with base
quality scores below the minimum (30 per base) across
the whole read or read length less than 30 bases were re-
moved using Trim Galore (ver. 0.4.0) [41].
Filtered sequences were analyzed through the QIIME

pipeline (ver. 1.9) [42] using scripts implemented within
QIIME. Paired-end reads were merged and were clus-
tered into operational taxonomic units (OTUs) at a se-
quence similarity level of 97% by UCLUST (default
parameters). OTUs that had less than 10 reads mapped
were removed. All raw sequences from this study were
deposited in the National Center for Biotechnology In-
formation (NCBI) Sequence Read Archive (SRA) under
accession number SRP125515.

Statistical analysis
All data with the exception of OTU comparisons were
analyzed using SAS software (version 9.4, SAS Institute,
Cary, NC, USA). As mentioned, 52 subjects were en-
rolled in the study. With this number of subjects, we es-
timated that we would be able to detect an effect size of
0.4 with 80% power. This was based on our published
results from a whole grain barley and brown rice feeding
trial, where we saw an effect size of 0.48 for change in
IL-6 with the whole grain treatment [25]. Following the
intervention, differences across treatment groups were
assessed using ANOVA where treatment group was the
main factor and BMI (at baseline), gender, and baseline
outcome measurement were covariates. Changes in mea-
sured variables from baseline to the end of the study
within each group were also assessed after correcting for
BMI (at baseline), gender, and baseline values. Stool
bacterial data was log2 transformed for analysis.
Correlations were analyzed using Pearson’s method.
Changes in OTU abundances were determined using
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DESeq2 (ver. 1.14) [43] in the R Bioconductor package
(http://www.bioconductor.org) (ver. 3.1.2). P-values for
stool bacterial data and correlations were corrected
using the false discovery rate procedure. All analyses
corrected for baseline concentrations, age, gender, and
body mass index. One subject was excluded from the
control group in the IL-6 analysis due to an outlying
value (15.7 pg/mL). P-values for other comparisons were
adjusted using Tukey’s procedure. Adjusted p < 0.05 was
considered significant.

Results
Baseline characteristics
There were no significant differences among treatment
groups at baseline except for age (Table 1). Participants
in the WG group were significantly older than the con-
trol group. This was due to a higher proportion of sub-
jects that were over 40 years of age (52% compared with
11% in the FV group and 0% in the control group). We
are uncertain as to the cause of this significant difference

as subjects were randomized into treatment groups. It is
known that composition and activity of the microbiome
changes as one ages [44, 45]. There were two elderly
subjects (> 70 years of age) in the study: one in the WG
group and the other in the FV group.
There were a few notable non-significant observations

in the baseline data concerning the microbiota (Table 1).
First, the fecal butyrate concentration seemed unusually
high in the control group. While not significant, it was
concerning to observe these high values at baseline. The
reasons for the apparently high butyrate concentration
in the control group is not known. Second, we observed
that the Bacteroidetes phylum appeared underrepre-
sented and the Firmicutes phylum overrepresented in
this sample population compared with several studies
[11, 19, 25], although this may not be a relevant issue
[46, 47]. The low abundance of Bacteroidetes could be
due to the characteristics of the type of subjects re-
cruited for this study. It could also be due to bias during
fecal DNA extraction. Importantly, DNA was extracted
and sequencing was performed on baseline and end of
study fecal samples simultaneously. Therefore, any bias
created during the analysis would likely affect all
samples uniformly.

Changes in host characteristics
Based on diet diaries, participants in the WG and FV
groups were compliant with the treatment protocols
(Table 2). The diaries also showed that the interventions
were treatment specific; e.g., subjects in the FV group
did not increase consumption of WG foods while sub-
jects in the WG group avoided FV. Based on intake of
refined grain in the control group it appeared that the
subjects in the WG group replaced refined grain foods
with WG foods. Oddly, despite repeated instructions, it
appeared that the subjects in the FV group may not have
recorded all refined grain foods consumed. Perhaps they
were more concerned about making sure to record all
treatment foods.
Weekly gastrointestinal symptoms were recorded to

track changes throughout the study. There were no sig-
nificant changes in GI symptoms throughout the study,

Table 1 Baseline characteristics of subjects that completed the
study (N = 49)

Treatment group

Baseline data Control WG FV P-value

Subjects (N) 14 17 18

Gender (M/F) 7/7 6/11 6/12 0.20

Age (years) 27.6 ± 5.9 b 39.2 ± 13.5 a 29.4 ± 12.8 ab < 0.01

BMI (kg/m2) 30.1 ± 5.2 33.7 ± 6.3 30.3 ± 6.0 0.40

Plasma inflammatory markers

IL-6 (pg/mL) 2.9 ± 1.5 4.4 ± 1.9 4.3 ± 2.6 0.60

TNF-α (pg/mL) 23.8 ± 5.9 26.7 ± 4.17 24.2 ± 5.2 0.11

hs-CRP (mg/mL) 0.6 ± 0.4 0.8 ± 0.6 0.7 ± 0.4 0.89

LBP (mg/L) 1.8 ± 0.3 1.9 ± 0.4 1.8 ± 0.4 0.38

Stool short chain fatty acids (mmol/g feces)

SCFA 101 ± 71 59.9 ± 39.7 64.0 ± 36.1 0.29

Acetate 64.6 ± 38.2 42.9 ± 27.9 46.6 ± 28.0 0.43

Propionate 20.4 ± 23.0 9.74 ± 7.65 9.61 ± 5.93 0.30

Butyrate 16.3 ± 12.8 7.14 ± 5.32 7.80 ± 5.15 0.07

BCFA 2.34 ± 1.74 1.74 ± 1.30 1.52 ± 0.78 0.37

Stool microbiota composition (relative abundance, %)

Actinobacteria 6.54 ± 4.08 5.99 ± 3.39 4.42 ± 4.32 0.36

Bacteroidetes 13.8 ± 9.7 11.2 ± 5.7 12.3 ± 8.1 0.38

Firmicutes 78.8 ± 9.2 81.0 ± 8.4 82.4 ± 9.5 0.28

Proteobacteria 0.67 ± 0.08 1.14 ± 1.92 0.43 ± 0.55 0.26

Verrucomicrobia 0.18 ± 0.42 0.62 ± 1.13 0.46 ± 0.94 0.75

Other 0.04 ± 0.11 0.07 ± 0.14 0.05 ± 0.14 0.79

Mean ± standard deviation; WG whole grain, FV fruits and vegetables, BMI
body mass index, IL-6 interleukin-6, TNF tumor necrosis factor-α, hs-CRP high-
sensitivity C-reactive protein, LBP lipopolysaccharide binding protein, SCFA
short chain fatty acids, BCFA branched chain fatty acids

Table 2 Average daily intake of treatment foods recorded by
subjects in diet diaries

Treatment
Groups

Refined grain
(oz. eq.)

Fruit
(cup eq.)

Vegetables
(cup eq.)

FV (cup
eq.)

WG
(oz. eq)

Control 7.1 ± 0.7 a 0.7 ± 0.1
b

0.3 ± 0.1 b 1 ± 0.1
b

0.7 ±
0.1 b

WG 2.7 ± 0.7 b 0.4 ± 0.1
b

0.3 ± 0.1 b 0.7 ±
0.1 b

3.4 ±
0.2 a

FV 2.4 ± 0.4 b 1.6 ± 0.1
a

1.2 ± 0.1 a 2.9 ±
0.2 a

0.9 ±
0.3 b

Mean ± standard deviation; means followed by different letters in the same
column are significantly different (p < 0.05)
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indicating that the treatments were well-tolerated (see
Additional file 2).
BMI was recorded at baseline and at the end of the

study. There were no significant changes in BMI (see
Additional file 3).
There were significant decreases in LBP from baseline

values in participants consuming the WG and FV diets
with no change for those on the control diet (Fig. 2).
Additionally, the WG diet resulted in a significant de-
crease in TNF-α levels during the intervention, whereas
no significant changes in TNF-α were found for those
on the other treatment. There were no significant
changes in circulating IL-6 levels for subjects receiving
the control and WG treatments for IL-6, but there was a
significant decrease in FV diet. There were no significant
changes from baseline for hs-CRP levels for any
subjects.

Changes in microbiota characteristics
There were no significant changes in fecal short chain fatty
acid (SCFA) production during the study period for any
participants (see Additional file 3). The apparently high
fecal butyrate in the control group at baseline appeared to
remain high for the duration of the study such that no sig-
nificant change over time was observed.
The FV intervention resulted in a significant in-

crease in α-diversity, a measure of species richness,

while the other treatment groups did not show any
effect (Fig. 3). β-Diversity, a measure of the change in
species richness over time, was not significantly dif-
ferent across treatment groups. Additionally, there
were no significant differences between treatment
groups from baseline to the end of treatment at the
OTU level. When OTUs were binned according to
their relative fold change during the intervention, the
WG and FV treatment groups showed a shift toward
a decrease in some OTUs of < 0.5-fold while the con-
trol treatment group showed a shift toward an in-
crease of < 0.5 fold. No significant change in bacterial
genera were found, but there were observable individ-
ualized responses to the treatments (Fig. 4). Based on
the cluster analysis, Bacteroides, Ruminococcus (Rumi-
nococcaceae), Ruminococcus (Lachnospiraceae), Bifido-
bacterium, and Fecalibacterium showed the most
change from baseline to the end of the study, but
changes were not dependent on treatment groups.

Association between changes in inflammatory markers
and microbiota composition
Changes in inflammatory makers during the study ap-
peared to be more correlated with baseline microbiota
composition than with changes in microbiota compos-
ition during the study or composition at the end of the
study (Fig. 5). Significant correlations were found

Fig. 2 Changes in inflammatory markers during the treatment period. a) Lipopolysaccharide binding protein (LBP); b) tumor necrosis
factor (TNF)-α; c) interleukin (IL)-6; and d) high sensitivity C-reactive protein (hs-CRP); * p < 0.05, ** p < 0.01, *** p < 0.001 for change
across time = 0; all analyses corrected for baseline concentrations, age, gender, and body mass index; one subject was excluded from
the control group in the IL-6 analysis due to an outlying value (15.7 pg/mL)
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between baseline microbiota composition and change in
LBP during the study. In particular, individuals with
higher Firmicutes and lower Bacteroidetes showed a
greater decrease in LBP during the study. At deeper
taxonomic levels, it appeared that this was due mostly to
abundance of a few genera of the Clostridales order (see
Additional file 4).

Discussion
In the present study we aimed to evaluate the impact
of increasing WG or FV intake on inflammatory
makers and gut microbiota composition in individuals
affected by overweight or obesity with normally low
intakes of these foods. Subjects increased their intake
of these foods from < 1 serving/d to 3 servings/d.
Subjects did not all consume the same foods, but ra-
ther consumed their choice of foods from a particular
food category. In this respect, our intervention was
very modest, focusing on a potentially sustainable
change in participants’ diet pattern. Anecdotally,
many subjects in each group commented on how dif-
ferent they felt their diet was. Many commented that
they “[hadn’t] eaten this healthy in years.” During the
weekly visits to the study facility, several subjects in
the FV group often indicated that it was very difficult
to adhere to the treatment regimen. No such com-
ments were made by individuals in the other two
groups. Many participants indicated informally that

they planned to continue trying to consume more FV
or WG after the study period.
One limitation of this experimental design is that sub-

jects used diet diaries to record their food intake. While
diet diaries have the advantages that they can provide
detailed food intake data without the constant presence
of study personnel, they do have disadvantages including
accidental or intentional under or over-reporting of
foods consumed or portion sizes [48]. For example, our
results suggested that participants in the FV group may
have under-reported their intake of refined grain foods.
However, the weekly visits to the clinical facility coupled
with the positive biological effects observed in the treat-
ment groups suggests that subjects generally conformed
to the treatment protocols.
The WG and FV diets had significant positive impacts

on inflammatory markers. The FV treatment decreased
LBP and IL-6, while the WG foods decreased LBP and
TNF-α. Previous studies with FV and WG have also re-
ported reductions in inflammatory markers [6–10, 12,
24, 25], although some other studies have not shown sig-
nificant differences [23, 30, 31, 49]. The differences in
experimental design and treatment foods make direct
comparisons among studies difficult. Lipopolysaccharide
is a component of the cell walls of gram-negative bac-
teria; increased levels of LBP in the blood is suggestive
of endotoxemia [50]. The change in LBP in both groups
suggested a positive impact on gut barrier function. The
decreases in either IL-6 or TNF-α suggest reductions in

Fig. 3 Changes in fecal microbiota during the treatment period. a) α-Diversity; b) β-diversity; and c) operational taxonomic unit (OTU) fold-
change; * p < 0.05, for change across time = 0; diversity measures corrected for baseline concentrations, age, gender, and body mass index
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subclinical inflammation, which is associated with a
lower risk of metabolic syndrome.
One limitation of this study is that with the variety of

food options provided to subjects it was not possible to
pinpoint which component of the foods were responsible
for the biological effects observed. Both treatment
groups were good sources of dietary fiber, although the
composition of the dietary fibers within each group were
very different. The major dietary fibers in WG are
β-glucan, arabinoxlyan, and cellulose, while FV primarily
contains pectins, xyloglucan and cellulose [51, 52]. FV

also contain more soluble fiber, and WG contain more
insoluble fiber [52–54]. Additionally, FV have more free
polyphenols, while WG have a predominance of bound
phenolics [55]. WG foods can also contribute vitamin E,
and phytoserols that have been linked to lowering
markers of metabolic syndrome [56]. In contrast, FV in-
clude folate, flavonoids, vitamin C, and β-carotene,
which have been inversely correlated with hs-CRP and
IL-6 [57].
We did not find any effects of WG or FV on hs-CRP,

even though previous studies have reported significant
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Fig. 4 Change in dominant bacteria in fecal samples from baseline to the end of the treatment. Treatment groups are clustered using
hierarchical clustering (Ward’s method); taxa are ordered by absolute change in abundance across all subjects; uncl, unclassified; C,
control; FV, fruits and vegetables; WG, whole grain
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effects [6, 9, 13, 27]. Post-hoc power analysis revealed
that we had only 12% power to detect differences in
hs-CRP due to our modest sample size. Therefore, even
if WG or FV had significant effects on hs-CRP we would
likely not be able to detect it. Notably, our study was
powered to detect differences in IL-6, where we did find
differences. We also found differences in LBP and
TNF-α, indicating sufficient power for those inflamma-
tory markers.
One unique aspect of the present study is the com-

parison between WG and FV. There are several previ-
ous studies that test WG in comparison with refined
grain or high and low FV diets [6, 7, 9–13, 19, 24–
28, 30–32, 49]. However, no previous studies have in-
cluded both food groups in the same study. Interest-
ingly, while both treatment groups decreased

inflammatory markers, each decreased a different bio-
marker. These unique changes suggest that the bene-
ficial effects of WG and FV on inflammation may be
mediated via different mechanisms. Furthermore, per-
haps consuming both FV and WG together could
have a synergistic effect to help lower inflammation.
There are some diets that combine, among other diet-
ary recommendations, WG and FV to improve health
(e.g., DASH). For instance, a clinical trial of the
DASH diet on type 2 diabetic patients showed a sig-
nificant reduction in CRP [58, 59], although other
similar feeding trials have not shown reductions in
CRP or markers of inflammation [60]. In a study
where participants followed a Nordic diet, a reduction
in expression of genes related to inflammation in sub-
cutaneous adipose tissue was reported [61].

Fig. 5 Correlations between change in plasma markers during the study and microbiota composition. a) Baseline abundance; b) end of study
abundance; and c) log2 fold-change during the study of stool microbiota; d) scatterplot of baseline abundance of Firmicutes and change in
lipopolysaccharide binding protein (LBP) during the study; LBP lipopolysaccharide binding protein, TNF-α tumor necrosis factor, IL-6 interleukin-6,
hs-CRP high sensitivity C-reactive protein, WG whole grain, FV fruits and vegetables; partial variables were treatment group, age, gender, and body
mass index; N = 49 except IL-6 where N = 48; p-values were corrected for false discovery rate; * adjusted p < 0.05
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The significant decrease in LBP during the interven-
tions suggested a link between the changes in inflamma-
tory state and the gut microbiota. However, save for an
increase in α-diversity in the FV group, we found no sig-
nificant changes in gut microbiota composition by treat-
ment group during the intervention. Rather, found that
gut microbiota composition at baseline was more related
to changes in LBP than changes in the gut microbiota
during the intervention. Others have also found that
baseline microbiota composition is associated with
changes in outcomes during an intervention trial.
Korpela et al. [18] reported that baseline microbiota
composition had the greatest ability to predict changes
in host cholesterol levels using data from three inde-
pendent intervention studies. Kovatcheva-Datchary et al.
[28] found that baseline abundances of Prevotella were
associated with host improvements in glucose tolerance.
In our study, it appeared that certain members of the
Clostridiales order were perhaps involved in the reduc-
tion in LBP following either a WG or FV intervention.
The Clostridiales order contains a number of important
gut microbiota families, such as Lachnospiraceae and
Clostridiaceae, which contain bacteria that are important
in the degradation of complex carbohydrates [62, 63].
The increase in α-diversity during the FV diet may

have been due to the introduction of the wide variety of
new dietary fibers to subjects’ diets. In contrast, the WG
diet was mainly composed of wheat-based products
which contain similar dietary fibers to the refined grain
products that subjects consumed as part of their habit-
ual diet prior to the study.
There have been several studies that report changes in

the gut microbiota following a WG intervention. Most
studies report only modest to no changes in gut micro-
biota composition in accordance with our study [10, 11,
13, 26, 32, 49]. Others have reported more substantial
changes, such as increases in beneficial bacteria and
even phylum-level changes [14, 64]. The differences in
gut microbiota changes may be due to differences in the
types, forms, or quantities of WG consumed in each of
the studies. Notably, among those microbial taxa that
changed the most during the study, our power to detect
significant shifts only ranged from 25 to 50%. Therefore,
the treatments may have induced shifts in the micro-
biota that we were unable to detect due to insufficient
sample size. Notably, our study was powered to detect
differences in inflammatory markers (IL-6) and not
microbiota changes.
Very few studies have reported on the changes in gut

microbiota composition following a FV intervention. Li
et al. [19] reported shifts in the gut microbiota structure
following a cruciferous vegetable intervention, but the
shifts were dependent on individuals. Despite the indi-
vidualized responses, four taxa were associated with the

cruciferous vegetable diet: Eubacterium hallii, Phasco-
larctobacterium faecium, Alistipes putredinis, and
Eggerthella spp. In another study also feeding crucifer-
ous vegetables, the authors reported significant reduc-
tions in sulfate-reducing bacteria [65]. This is desirable,
since sulfate is reduced to hydrogen sulfide by
sulfate-reducing bacteria, which has been associated with
several GI disorders [66, 67].
This present study did not show significant changes in

fecal SCFA. This has also been reported by others: a
three-week treatment of WG cereal showed no signifi-
cant difference between whole grain treatment and the
control in SCFA production [64]. SCFA are rapidly
absorbed from the gut, which could be why many stud-
ies, including our study, show no significant changes in
SCFA production [68]. However, when using a more
dramatic treatment of a 12 week diet rich in WG foods,
the authors reported increased plasma propionate con-
centrations [11].

Conclusions
FV and WG interventions significantly and uniquely re-
duced biomarkers of inflammation. The FV treatment
decreased circulating IL-6 and LBP and while the WG
treatment decreased TNF-α and LBP. Both treatments
had individualized effects on the gut microbiota, with a
significant increase in α-diversity in the FV treatment.
These data support the positive impact that WG and FV
intake can have on metabolic health in individuals af-
fected by overweight or obesity with normally low intake
of WG and FV.
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