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Abstract

Background: Nutrients such as docosahexaenoic acid (DHA), prebiotics and β-glucan have been associated with
reduced incidence of respiratory illnesses and allergic manifestations (AM). Our objective was to assess if consumption
of a cow’s milk-based beverage with these and other nutrients supports respiratory, gastrointestinal, and skin health in
otherwise well-nourished, healthy children.

Methods: In this double-blind, randomized, controlled trial, healthy children (1–4 years of age) from two daycare
centers in Brazil were fed three servings/day of a cow’s milk-based beverage (CMBB; n = 125) containing DHA, the
prebiotics polydextrose (PDX) and galactooligosaccharides (GOS), β-glucan, and other key nutrients, or a control cow’s
milk-based beverage (control; n = 131) for up to 28 weeks. Occurrence of respiratory infections, diarrheal disease and
AM was assessed by study pediatricians and the number of episodes were analyzed with the Cochran-Mantel-Haenszel
test and the Andersen-Gill model.

Results: The CMBB group had fewer episodes of AM, which included allergic rhinitis or conjunctivitis, wheezing,
allergic cough, eczema and urticaria, compared to the control group (p = 0.021). The hazard ratio for increased number
of episodes of AM was lower in the CMBB group compared to control (HR, 0.64; 95 % CI 0.47–0.89; p = 0.007). There
was no difference in the incidence of respiratory infections and diarrheal disease between groups.

Conclusion: A cow’s milk-based beverage containing DHA, PDX/GOS, and yeast β-glucan, and supplemented with
micronutrients, including zinc, vitamin A and iron, when consumed 3 times/day for 28 weeks by healthy 1- to 4-year-
old children was associated with fewer episodes of allergic manifestations in the skin and the respiratory tract.

Trial registration: registration number: NCT01431469
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Background
Two leading causes of morbidity and mortality among
children younger than 5 years of age are respiratory
infections and diarrheal disease [1], which can be inter-
related, as diarrhea increases the risk of lower respira-
tory infections [1, 2]. The global rise of allergic diseases,
including asthma, atopic dermatitis and allergic rhinitis,
is another cause of concern in children, with a signifi-
cant impact on quality of life [3–5]. Nutrition-related

factors are responsible for 11 % of the total global
disease burden in children younger than 5 years [6].
Children are particularly vulnerable to diet inadequacies,
which can compromise various mechanisms of immune
function, thereby increasing risk of infections [7, 8] and
also of allergic diseases, since oral tolerance to antigens
may be impaired [9]. A recent study in 2- to 6-year-old
daycare children from all regions in Brazil showed that
even those of the highest socioeconomic levels had
insufficient consumption of fiber and micronutrients,
including calcium and vitamins D and E [10]. A system-
atic review concluded that apparently well-nourished
children younger than 5 years from developed countries
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have diets that are inadequate in meeting the recom-
mendations, placing them at nutritional risk [11]. There-
fore, even diets of eutrophic children have room for
improvement.
There is currently no agreement on the impact of a

dietary improvement in children whose nutrient intake
meets minimal requirements but may not be the most
effective to promote improved health outcomes. Certain
nutrients support the immune system, such as long-
chain polyunsaturated fatty acids (LCPUFAs), especially
omega-3 LCPUFAs, whose consumption has been asso-
ciated with reduced allergic and/or respiratory illnesses
in infants and children [12–16]. Likewise, prebiotic
oligosaccharides support the immune system through
stimulation of beneficial gut bacteria [17–20] and were
associated with decreased respiratory infections and
allergic diseases [21–24]. β-glucan, a polysaccharide
derived from yeasts, fungi or bacteria, has also demon-
strated immune-supporting properties [25, 26], with data
showing protection against respiratory infections and al-
lergy in adults and children [26–28]. In a recent random-
ized clinical trial in 3- to 4-year-old children attending
daycare in China, we demonstrated that daily consump-
tion of a cow’s-milk based beverage (CMBB) containing a
combination of nutrients including docosahexaenoic acid
(DHA), the prebiotics polydextrose (PDX) and galacto-
oligosaccharides (GOS), and yeast β-glucan, and enriched
with micronutrients such as vitamin A, zinc and iron, was
associated with fewer acute respiratory infections (ARI)
compared to cow’s milk [29].
Our objective in the current study was to evaluate if

consumption of the nutritionally enriched CMBB used
in the study in China had an effect on the incidence of
ARI and diarrheal disease and secondarily on allergic
manifestations (AM) in a distinct population of children
attending daycare in Brazil. Typically, children in China
start attending daycare when they are 3 year-old whereas
in Brazil children usually start at daycare when they are
1 year old or earlier. Consequently, we wanted to assess
in the current study if potential outcomes associated
with consumption of the CMBB are influenced by age,
ethnicity, climate and/or socioeconomic status. The
implication would be to allow recommendation of the
CMBB to children from different parts of the world with
diverse ethnic and socioeconomic status.

Methods
Population
Children (1 up to 4 years of age) from 2 daycare centers
in Salvador, Bahia, Brazil who had been consuming cow’s
milk or cow’s milk-based beverage for at least 48 hours
prior to randomization were eligible. Exclusion criteria
were: > 50 % of total feedings consisting of breast milk;
consumption of prebiotics or probiotics in the 15 days

prior to randomization; diarrhea or ARI during the
48 h prior to randomization; a z-score of weight-for-
height < −3; or any serious concurrent illness.
Eligible children were randomly assigned to one of

two study products according to a computer-generated
randomization sequence provided by the study sponsor
(Mead Johnson Nutrition). The next sealed randomization
envelope in sequence was opened to reveal the code of the
product that the participant should receive. Product labels
and randomization envelopes were created to prevent
unblinding and the study products were similar in odor,
color, and flavor (vanilla). Due to the broad variation of
ages and to adjust for any potential impact of age on out-
comes, participants were stratified at randomization into
12–24 months of age or 25–48 months of age. We
estimated that children in these two age-range groups
would be fairly homogenous in terms of potential out-
comes related to the consumption of CMBB, including
susceptibility to infections, diarrhea and AM.
The study was conducted from October 2011 to April

2012. The Federal University of Bahia Ethical Committee
approved the protocol, and a parent/legal guardian
provided signed informed consent prior to enrollment.

Design
In this double-blind (participants and researchers), ran-
domized, controlled, parallel-designed, prospective trial,
children were fed an experimental CMBB, according to
the CODEX definition for follow-up formula [30], with
25 mg of DHA, 1.2 g of a blend of PDX/GOS (1:1 ratio)
and 8.7 mg of yeast β-glucan (Wellmune WGP®, Biothera,
Eagan, Minnesota) per serving, or an isocaloric, non-
supplemented cow’s milk-based beverage (control). Study
products were given three times per day for 28 weeks, as a
replacement for the usual breakfast, afternoon and dinner
beverages. The breakfast and afternoon servings were
offered by daycare attendants and the evening serving as
well as weekend and holiday’s servings were offered at
home by the caregiver. Each serving consisted of 40 g of
powder mixed with 200 mL of water. The leftover of each
serving was measured and recorded. See Table 1 for nutri-
ent composition of study products.

Outcomes
The primary outcome was incidence of ARI and/or diar-
rheal disease. ARI comprised upper respiratory infections,
including common cold, pharyngitis, tonsillitis, otitis
media, infectious sinusitis and rhinitis, and lower respira-
tory infections, including pneumonia, bronchiolitis and
bronchitis [31]. Diarrheal disease was defined as ≥ 3 liquid
or semi-liquid stools in 24 h with fever and/or vomiting
and/or dehydration and compromised general status.
Secondary outcomes included incidence of AM (allergic
rhinitis or conjunctivitis, wheezing, allergic cough, eczema
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and urticaria) [31], incidence of all adverse events, growth,
stool characteristics, fecal and serum immune markers,
iron and zinc status and incidence of stool parasites.
In a post hoc analysis, we compared incidence of

constipation during the study in the two study groups.
Constipation was defined as presence of at least two of
the following for at least two uninterrupted weeks: hard
stools, difficulty or pain to defecate and a > 72-h interval
without defecation.
All clinical outcomes were diagnosed by study pediatri-

cians. Participants were evaluated by study pediatricians at
the pediatric office in the daycare every time a health
complaint was reported, either by parents/caregivers or

daycare assistants. In addition, every 4 weeks participants
were routinely assessed by study pediatricians at the
time of anthropometric measurements. Weight and
length/height measurements were obtained during
randomization and every 4 weeks thereafter and con-
verted into z-scores based on WHO growth standards
[32]. Blood and stool samples were collected at base-
line and end of study to assess peripheral blood cell
count, serum ferritin and zinc, immune markers by
ELISA (fecal secretory IgA and serum IL-10, TGF-β1,
TGF-β2, IL-4 and IFN-ϒ) and stool parasites by direct
microscopy. Laboratory analyses were conducted by R&D
Systems, Minneapolis, MN, USA; Doctor’s Data, St.
Charles, IL, USA; and the study site’s local lab.

Sample size and statistics
A sample size of 125 completed per group was needed
to achieve 90 % power, assuming a control group pro-
portion of 0.5 and a test group proportion of 0.3 at an
alpha level of 0.05. Frequencies of ARI, diarrheal disease
and AM were compared using the Cochran-Mantel-
Haenszel test stratified by age category and were further
analyzed using the Andersen-Gill model with recurrent
events modeled under the framework of the propor-
tional hazards assumption. Fecal sIgA and serum TGF-
β1 and TGF-β2 as well as their changes from baseline to
end of study were compared using the van Elteren test
stratified by age category. The Kruskal-Wallis test was
used for all other serum immune markers, serum ferritin
and zinc and peripheral blood counts, as well as changes
in IL-10 and ferritin and zinc from baseline to end of
study. Changes in peripheral blood counts were analyzed
using ANCOVA, with baseline values as covariates. Stool
frequency and consistency and weight- and length/
height-for-age and weight-for-length/height z-scores
were analyzed using repeated measures ANOVA.

Results
Study population and clinical outcomes
The study enrolled 256 children (control = 131; CMBB =
125); 2 discontinued in control and five in the CMBB
group. Demographic and baseline characteristics (race, age,
gender distribution and weight- and length/height-for-age
and weight-for-length/height z-scores) were similar be-
tween groups. There were no growth differences between
groups during the study. In both groups there was signifi-
cant increase from baseline to end of study in weight- and
length/height-for-age z-scores, as well as weight-for-
length/height z-scores (females: 0.4 and 0.2 to 0.5 and 0.3;
males: 0.4 and 0.4 to 0.5 and 0.5, in control and CMBB,
respectively; p < 0.001). The average daily intake of study
products was not significantly different between groups
over the duration of the study (12–24 months of age:
control 531 mL/day vs. CMBB 504 mL/day, p = 0.32; 25–

Table 1 Nutrient composition of study products

Per 40 g serving of powder Control CMBB

Energy, kcal 180 180

Protein, g 7.3 7.3

Fat, g 6.6 6.6

- DHA, mg – 25

Carbohydrate, g 23 23

- Dietary fiber, g (1:1 ratio PDX/GOS) – 1.2

- Beta-1,3/1,6-glucans, mg – 8.7

Vitamin A, IU 380 630

Vitamin D, IU 31 119

Vitamin E, IU 0.33 2.6

Vitamin K1, mcg 0.41 9.5

Thiamine, mcg 57 210

Riboflavin, mcg 520 490

Vitamin B6, mcg 42 183

Vitamin B12, mcg 0.72 0.72

Niacin, mcg 144 2200

Folic acid, mcg 7.8 31

Pantothenic acid, mcg 770 1160

Biotin, mcg 5.4 4.7

Vitamin C, mg 2.4 29

Choline, mg 28 44

Calcium, mg 280 290

Phosphorus, mg 200 187

Magnesium, mg 25 26

Sodium, mg 97 96

Potassium, mg 400 420

Chloride, mg 330 320

Iodine, mcg 13.4 15.2

Iron, mg 0.05 3.0

Zinc, mg 0.72 2.3

Manganese, mcg 5 19.2

Copper, mcg 4.8 82

– Indicates that product did not contain the nutrient
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48 months of age: control 547 mL/day vs. CMBB 498 mL/
day, p = 0.06).
There was no difference in the incidence of ARI or

diarrheal disease between groups. The CMBB group had
fewer episodes of AM compared to control (Table 2).
The hazard ratio for increased number of episodes of
AM was lower in the CMBB group compared to control,
with no difference for ARI or diarrheal disease (Fig. 1).
There was no significant difference between groups in
the hazard ratio of having at least one episode of ARI
(0.93, 95 % CI 0.49, 1.79; p = 0.84), diarrheal disease
(1.57, 95 % CI 0.71, 3.46; p = 0.26) or AM (0.61, 95 % CI
0.36, 1.04; p = 0.07). Among 99 types of adverse events
reported and compared between groups, only occur-
rence of thrush was statistically different between groups
(5 cases in CMBB vs. none in control; p = 0.03); 10 partici-
pants who experienced at least one serious adverse event
were reported in the control vs. 2 in the CMBB group.
The CMBB group had softer stools compared with

control in the first 3 months of the study (p ≤ 0.024). In
the subgroup of children 12–24 months of age, 8 of 98
children (8 %) met the criteria for constipation. How-
ever, all were in the control group, and five of the eight
(63 %) remained constipated at end of the study. In the
subgroup of children 25–48 months of age, no signifi-
cant difference was detected in the percentage of chil-
dren who remained constipated at end of study (CMBB
group 1/14; 7 % vs. control group 3/10; 30 %; p = 0.27).

Blood and fecal outcomes
There were no differences between groups in any of the
measured immune markers (Table 3). Additionally, no
relevant differences were observed between groups for
serum zinc and ferritin, hemoglobin, hematocrit, and red
blood cells (Table 4); white blood cells and platelets
(Table 5). According to WHO criteria (anemia:
hemoglobin < 11 g/dL) [33], 18.04 % of the overall popu-
lation was anemic at baseline and 13.33 % at end of

study; 37.50 % was iron deficient at baseline and 45.83 %
at end of study (iron deficiency: ferritin < 12 ng/mL)
[33], with no differences between groups. Incidence of
fecal parasites detected among the 17 assessed parasites
is presented in Table 6.

Discussion
In this randomized, double-blind, controlled study we
demonstrated for the first time that healthy 1- to 4-year-
old children who consumed a CMBB with DHA, PDX/
GOS and yeast β-glucan for 28 weeks had fewer AM
episodes compared to children who consumed an unfor-
tified, cow’s milk-based beverage. No effect on ARI or
diarrheal disease was associated with consumption of
the CMBB.
These results are consistent with studies linking pro-

tection against AM with LCPUFAs [12, 34], prebiotics
[21, 22, 35] and β-glucan [28, 36, 37]. Dietary LCPUFAs
were associated with less atopic dermatitis and wheezing
[12, 34], and amelioration of symptoms in asthmatic
children [38]. Likewise, prebiotics have been associated
with reduced incidence of atopic dermatitis, wheezing
and allergic rhinitis [21, 35]. β-glucan was shown to
alleviate symptoms of asthma in children when injected
subcutaneously for 8 weeks [39] and symptoms of aller-
gic rhinitis in adults [28, 36, 37]. In an RCT, adults with
seasonal allergic rhinitis receiving β-glucan 250 mg/day
orally for 4 weeks had reduced nasal and eye symptoms
compared with a group who received placebo [28].
Additionally, vitamin D deficiency has been correlated
with respiratory allergy [40], thus the addition of vitamin
D to the CMBB could have contributed to our results.
Future studies may identify the contribution of individ-
ual nutrients to the present findings.
LCPUFAs modulate some aspects of the innate and

adaptive immune systems via different mechanisms,
affecting cell membrane fluidity, membrane receptors
and signaling pathways. DHA can prevent NF-κB

Table 2 Frequency of episodes of illness during the 28-week study period

Number of episodes p-value*

None 1 2 3 4 >5

Acute respiratory infections (ARI)

Control; n (%) 25 (19) 40 (31) 28 (21) 21 (16) 10 (8) 7 (5) 0.938

CMBB; n (%) 25 (20) 40 (32) 24 (19) 16 (13) 14 (11) 6 (5)

Diarrheal disease

Control; n (%) 119 (91) 11 (8) 0 (0) 1 (1) – – 0.354

CMBB; n (%) 108 (86) 15 (12) 2 (2) 0 (0) – –

Allergic manifestations (AM)

Control; n (%) 71 (54) 30 (23) 19 (15) 10 (8) 1 (1) – 0.021

CMBB; n (%) 81 (65) 28 (22) 12 (10) 3(2) 1 (1) –

*Statistical analysis used Cochran-Mantel-Haenszel test adjusted for age category
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Fig. 1 Hazard ratios (95 % CI) for increased number of episodes of illness using Andersen-Gill model adjusted for age category (12–24 or 25–48 months)
and compared to control. ARI = acute respiratory infections

Table 3 Comparison of immune markers between study groups

Variablea Control median (IQRb) CMBB median (IQRb) p-value*

Fecal Secretory IgA, mg/dL

Baseline 102 (12–226) 67 (7–228) 0.975

Week 28 45 (8–183) 32 (6–153) 0.452

Baseline to Week 28 −1 (−110–28) −5 (−131–24) 0.664

IL-10, pg/mL

Baseline 19.1 (11.9–27.5) 17.3 (12.0–27.6) 0.760

Week 28 13.9 (9.1–18.6) 13.6 (9.8–19.1) 0.771

Baseline to Week 28 −4.9 (−13.0–3.0) −.39 (−12.0–0.0) 0.827

TGF-β1, pg/mL

Baseline 20572 (15943–25641) 22386 (17161–29081) 0.109

Week 28 29133 (22432–35466) 29131 (22010–37532) 0.957

Baseline to Week 28 7863 (2569–14178) 6351 (−1346–12472) 0.132

TGF-β2, pg/mLc

Baseline 344.1 (252.9–479.8) 326.0 (≤262.2–461.7) 0.801

Week 28 438.1 (296.7–600.2) 414.5 (≤331.0–586.3) 0.602

Baseline to Week 28 48.7 (0–123) 48.7 (0–125) 0.465

IL-4, pg/mLd

Baseline <1.6 (<1.6- < 1.6) <1.6 (<1.6- < 1.6) 0.305

Week 28 <1.6 (<1.6- < 1.6) <1.6 (<1.6- < 1.6) 0.305

IFN-ϒ, pg/mLd

Baseline <15.6 (<15.6- < 15.6) <15.6 (<15.6- < 15.6) 0.368

Week 28 <15.6 (<15.6- < 15.6) <15.6 (<15.6- < 15.6) 0.378
aAll markers except fecal secretory IgA were measured in serum
bIQR = 25–75 % interquartile range
c28 % of samples were under the detection limit
dChanges from baseline to week 28 were not analyzed because most of the samples were under detection limit
*Van Elteren test stratified by age category was used for fecal secretory IgA, TGF-β1 and TGF-β2; Kruskal-Wallis test was used for all other immune markers
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Table 4 Comparison of zinc, iron and red blood cell status between study groups

Variable Control median (IQRa) CMBB median (IQRa) p-value*

Serum Zinc, μmol/L

Baseline 21.4 (17.6–25.4) 21.8 (17.2–25.9) 0.793

Week 28 24.4 (20.5–29.5) 24.6 (20.2–28.2) 0.648

Baseline to Week 28 3.2 (−1.0–8.0) 3.3 (−2.0–8.0) 0.820

Serum Ferritin, ng/mLb

Baseline 16.4 (<10–26.2) 14.8 (<10–21.8) 0.413

Week 28 13.5 (<10–19.6) 13.3 (<10–21.8) 0.863

Baseline to Week 28 −2.2 (−10.0–3.0) 0.0 (−7.0–6.0) 0.148

Hemoglobin, g/dL

Baseline 11.8 (11.2–12.3) 11.7 (11.1–12.3) 0.432

Week 28 12.0 (11.4–12.6) 11.9 (11.4–12.5) 0.595

Baseline to Week 28c 0.26 (0.1) 0.30 (0.1) 0.561

Hematocrit, %

Baseline 35.5 (34.0–37.1) 35.3 (33.8–37.2) 0.560

Week 28 35.1 (33.0–36.9) 34.9 (33.4–36.8) 0.736

Baseline to Week 28c −0.41 (0.2) 0.32 (0.2) 0.747

Red Blood Cells, x109/mL

Baseline 4.6 (4.4–4.8) 4.6 (4.4–4.8) 0.678

Week 28 4.6 (4.3–4.7) 4.5 (4.2–4.8) 0.200

Baseline to Week 28c −0.05 (0.0) −0.12 (0.00) 0.024
aIQR = 25–75 % interquartile range
b26 % of the samples were at or under the detection limit
cChanges from baseline to study week 28 were analyzed using analysis of covariance (ANCOVA), with baseline values as covariate; the values listed are adjusted mean (SE)
*Kruskal-Wallis test was used for all variables except the ones described in footnote c

Table 5 Comparison of white blood cells and platelets between study groups

Variable Control median (IQRa) CMBB median (IQRa) p-value*

White Blood Cells, x106/mL

Baseline 9.7 (7.5–11.4) 9.1 (7.3–11.6) 0.471

Week 28 8.3 (7.2–10.6) 8.5 (7.2–10.1) 0.710

Baseline to Week 28b −0.95 (0.2) −0.75 (0.2) 0.565

Neutrophils, %

Baseline 41.0 (29.5–49.5) 36.4 (28.4–45.5) 0.069

Week 28 38.8 (28.9–47.2) 37.2 (29.9–45.3) 0.371

Baseline to Week 28b 0.25 (1.0) −0.57 (1.1) 0.578

Lymphocytes, %

Baseline 45.7 (35.0–55.7) 50.9 (40.2–58.0) 0.028

Week 28 47.1 (37.6–56.3) 48.3 (40.8–56.5) 0.230

Baseline to Week 28b −0.26 (1.0) 0.99 (1.0) 0.390

Platelets, x106/mL

Baseline 341 (286–401) 345.5 (301.5–400.5) 0.760

Week 28 315 (266–369) 311 (263–367) 0.771

Baseline to Week 28b −3.9 (0.77) −3.7 (.82) 0.837
aIQR = 25–75 % interquartile range
bChanges from baseline to study week 28 were analyzed using analysis of covariance (ANCOVA), with baseline values as covariate; the values listed are adjusted mean (SE)
*Kruskal-Wallis test was used for baseline and study week 28 values of all variables in this table

Pontes et al. Nutrition Journal  (2016) 15:19 Page 6 of 10



activation with consequent decrease in production of
IgE and pro-inflammatory cytokines that initiate and
prolong allergic reactions [41]. DHA metabolites such as
resolvins and protectins also act to limit inflammation
[42]. Prebiotics, through stimulation of gut bacteria, may
cause skewing of the perinatal allergy-prone Th2 milieu
towards a balanced Th1 immune pathway [43]. β-glucan
polysaccharides may also induce anti-allergic mecha-
nisms [44]. In asthmatic children, β-glucan promoted an
increase of IL-10 cytokine [39], which can inhibit Th2
mediators and allergic inflammation [45]. Interestingly,
higher exposure to microbial components endotoxin and
β-glucan was associated with decreased risk of
sensitization to inhalant allergens, in accordance with
the hygiene hypothesis [46].
Similar to the study in China [29], there was no effect

on diarrheal disease in the current study. Additionally,
we found no effect of CMBB on ARI in the Brazilian co-
hort, in contrast to the study in China in which the

CMBB group had fewer episodes of ARI and just one
case of AM in the whole study population [29]. Several
factors could explain the different results. The diverse
racial and genetic backgrounds of the two populations
may have differently affected the impact of the various
nutrients of the CMBB on the immune system. The Inter-
national Study of Asthma and Allergies in Childhood
(ISAAC) Phase Three trial reported low prevalence of
asthma and wheezing in the Asia-Pacific region and high
prevalence in Latin America [47] and Brazil is among the
countries with the highest prevalence of asthma [48].
Repeated episodes of ARI were more frequent in the
Brazil study, likely due to the younger age (1–4 years vs.
3–4 years in China) and predisposing conditions linked to
lower socioeconomic level in the Brazil cohort.
The combined prevalence of Ascaris lumbricoides and

Trichuris trichiura in our study (up to 5.6 % in the 2- to
4 year-olds at study week 28) is similar to the 5.4 %
prevalence of these helminths reported in children at-
tending daycare in Salvador, Brazil [49] and lower than
the prevalence reported in daycare children in São Paulo
(13 %) [50]. However, the prevalence of Giardia duode-
nalis in our study (up to 26 % in the 2- to 4-year-olds at
study week 28) was higher than the prevalence of Giar-
dia in those two studies [49, 50]. Intestinal parasites may
have contributed to the high incidence of AM in our
cohort, as suggested in a large survey in Brazilian
children < 5 years [51], including Giardia, which was
shown to be a risk factor for allergy [52].
Five children in the CMBB group, corresponding to

2 % of the overall population, were diagnosed with
thrush; one of them had varicella and one had been on a
recent course of antibiotic, both potential risk factors for
thrush [53]. High rates of colonization with Candida are
reported in healthy children, 12.5 % in 2 year-olds [54]
and 45 % in 3 to 5 year-olds [55]. We found an inci-
dence of thrush of 2.4 % in a previous study evaluat-
ing an experimental cow’s milk-based beverage in one
of the daycare centers of the current study [56], cor-
responding to three cases in the control group and
suggesting that thrush is not uncommon in that
population of daycare children.
In the first 3 months of the study, the CMBB group

had softer stools compared with control. We previously
demonstrated that daycare children of a similar age
receiving a CMBB with the same prebiotic blend used in
this study had softer and more frequent stools [56].
There are very limited data on the role of prebiotics to
alleviate constipation in young children [57]. In the
current study, no conclusions can be made regarding the
incidence of constipation in the 12- to 24- month age
group, since no one in this group receiving the CMBB
met the criteria for constipation in the post hoc analysis.
In the small number of participants who met the criteria

Table 6 Incidence of fecal parasites at baseline and study week
28 in the overall populationa

Type of parasite 12–24 months
of age n (%)

25–48 months
of age n (%)

Giardia duodenalis

Baseline 21 (21.6) 38 (24.4)

Week 28 36 (37.9) 37 (25.7)

Blastocystis hominis

Baseline 2 (2.1) 4 (2.6)

Week 28 6 (6.3) 7 (4.9)

Endolimax nana

Baseline 0 (0) 9 (5.8)

Week 28 5 (5.3) 4 (2.8)

Entamoeba coli

Baseline 0 (0) 7 (4.5)

Week 28 0 (0) 8 (5.6)

Ascaris lumbricoides

Baseline 1 (1.0) 3 (1.9)

Week 28 0 (0) 4 (2.8)

Trichuris trichiura

Baseline 0 (0) 3 (1.9)

Week 28 0 (0) 4 (2.8)

Cryptosporidium sp.

Baseline 3 (3.1) 0 (0)

Week 28 0 (0) 0 (0)

Entamoeba histolytica

Baseline 0 (0) 0 (0)

Week 28 0 (0) 1 (0.7)
aParticipants from both study groups combined. Participants who were
symptomatic as per physician’s evaluation received anti-parasite treatment
during the study
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for constipation in the 25- to 48- month age group,
fewer children receiving CMBB remained constipated at
end of study than control, although the difference was
not statistically significant.
An increase in weight and length/height z-scores

from baseline to end of study was observed in both
groups but there were no differences in growth be-
tween the two groups. According to standard criteria
to diagnose malnutrition [58], none of the children
were malnourished at enrollment. Inadequate adher-
ence to dietary guidelines has been identified in
apparently well-nourished children < 5 years of age
[11]. Moreover, young children consuming unfortified
cow’s milk were found to be at increased risk of
insufficient intake of various nutrients, including iron
and vitamin D, compared with those consuming a
fortified CMBB [59, 60]. These data suggest that the
use of a CMBB such as the one in this study may be
justified to correct inadequate nutrient intake leading
to hidden nutritional deficiencies that can impact a
child’s health and development in the absence of an
effect on growth. Iron deficiency, for instance, can
lead to decreased cognitive function even in the
absence of anemia [61]. Additionally, some nutrient
deficiencies such as zinc deficiency impair normal
appetite prompting a vicious circle; thus correction of
the deficiency helps establish an adequate eating
pattern [62].
There were no differences between groups in zinc

and iron status at onset and end of study, with an
incidence of anemia in the overall population of 18
and 13 %, at baseline and end of study, respectively.
Reported prevalence of anemia in Brazil reached 47 %
in children < 5 years of age, affecting all income strata
but being higher in the poorest ones [63]. Participants
in our study spent all weekdays at the daycare, receiv-
ing a high standard of dietary care, which likely con-
tributed to the low incidence of anemia. Our findings
are consistent with data showing a positive associ-
ation between daycare attendance and hemoglobin
level [64], which points to daycare attendance as
protective against anemia.
The strengths of the current study include confirm-

ation of diagnosis of ARI, diarrheal disease and AM
as well as adverse events by experienced study pedia-
tricians, close monitoring of the children at the
daycare on a daily basis and meticulous assessment of
intake of study formula. A weakness of the study is
the inclusion of four immune active components and
increased amount of minerals and vitamins in an
experimental formula compared to a control formula
without those improvements, which does not allow
attributing the benefits of the experimental formula
to individual components.

Conclusion
In this study, regular consumption of a cow’s milk-based
beverage containing DHA, PDX/GOS, and yeast β-
glucan, and supplemented with micronutrients including
zinc, vitamins A and D, and iron promoted improved
immune outcomes, with fewer episodes of allergic mani-
festations in the skin and the respiratory tract in young
children. These outcomes are highly relevant for a child’s
overall health and physical, cognitive, psychological and
social development and may contribute to the quality of
life of the whole family, potentially decreasing school ab-
senteeism, thus allowing less disruption on the lives of
working parents. They may also have a direct econom-
ical impact linked to the cost of treating AM episodes,
for parents and the health care system, and those costs
likely surpass the cost of providing CMBB to the child.
Naturally occurring prebiotics, β-glucan and DHA are

usually present in normal diet but their levels vary
according to the quality of the diet and may not be suffi-
cient to promote measurable health benefits. A CMBB
such as the one used in this study may be of benefit in
increasing the intake of such nutrients and correcting
nutritional deficiencies that can affect immune function.
We propose that a CMBB should be consumed in the
context of a healthy, balanced diet. Since this is the first
study showing a benefit of this CMBB on allergic mani-
festations in healthy young children, additional studies
are warranted to confirm the current results and
reinforce the recommendation of this formula to help
reducing allergic manifestations.
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