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Abstract
Aim To explore the genetic effects of CYP2C8, CYP2C9, CYP2J2, and EPHX2, the key genes involved in 
epoxyeicosatrienoic acid processing and degradation pathways in gestational diabetes mellitus (GDM) and metabolic 
traits in Chinese pregnant women.

Methods A total of 2548 unrelated pregnant women were included, of which 938 had GDM and 1610 were 
considered as controls. Common variants were genotyped using the Infinium Asian Screening Array. Association 
studies of single nucleotide polymorphisms (SNPs) with GDM and related traits were performed using logistic 
regression and multivariable linear regression analyses. A genetic risk score (GRS) model based on 12 independent 
target SNPs associated with GDM was constructed. Logistic regression was used to estimate odds ratios and 95% 
confidence intervals, adjusting for potential confounders including age, pre-pregnancy body mass index, history of 
polycystic ovarian syndrome, history of GDM, and family history of diabetes, with GRS entered both as a continuous 
variable and categorized groups. The relationship between GRS and quantitative traits was also evaluated.

Results The 12 SNPs in CYP2C8, CYP2C9, CYP2J2, and EPHX2 were significantly associated with GDM after adjusting 
for covariates (all P < 0.05). The GRS generated from these SNPs significantly correlated with GDM. Furthermore, a 
significant interaction between CYP2J2 and CYP2C8 in GDM (PInteraction = 0.014, ORInteraction= 0.61, 95%CI 0.41–0.90) was 
observed.

Conclusion We found significant associations between GDM susceptibility and 12 SNPs of the four genes involved 
in epoxyeicosatrienoic acid processing and degradation pathways in a Chinese population. Subjects with a higher 
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Introduction
Gestational diabetes mellitus (GDM) is defined as dia-
betes first diagnosed in the second or third trimester of 
pregnancy that was not clearly overt prior to gestation 
[1]. The prevalence of GDM varies in different popula-
tions and based on diagnostic criteria being used. The 
latest report from the International Diabetes Federation 
(IDF) Atlas indicated that the global standardised prev-
alence of GDM was 14% after adjusting for age [2]. It is 
estimated that 21.1 million (16.7%) live births to women 
in 2021 were affected by any type of hyperglycaemia in 
pregnancy (HIP), of which 80.3% were due to GDM [3]. 
Against the backdrop of the escalating obesity epidemic 
and advanced maternal age, the prevalence of GDM has 
rapidly increased and continues to surge. The impor-
tance of detecting GDM is exemplified by the fact that 
the hyperglycaemia status during pregnancy not only 
increases the maternal risk of subsequent progression 
to type 2 diabetes (T2D) by approximately 10 folds [4], 
compared with healthy controls but also predisposes the 
offspring to poor metabolic conditions in later life [5, 6]. 
This contributes to a vicious intergenerational cycle of 
diabetes and obesity that can impact the global health.

The well-documented risk factors contributing to 
GDM include maternal features (for example, advanced 
maternal age, weight, and high parity), previous GDM, 
and family history of diabetes [7]. Ethnicity has also been 
shown to be an independent determinant of GDM [8]. 
Additionally, polycystic ovarian syndrome (PCOS) has 
been frequently reported to be associated with an ele-
vated risk of GDM [9–11]. Several pathogenic processes 
are involved in the development of GDM such as pan-
creatic islet β-cell dysfunction and chronic insulin resis-
tance during pregnancy [12]. In addition, an imbalance 
between pro-inflammatory and anti-inflammatory pro-
cesses leads to the progression of GDM. Various inflam-
matory factors, such as interleukin (IL)-1β, IL-6, IL-8, 
and tumour necrosis factor alpha, have been confirmed 
to have an independent positive correlation with GDM 
[13–16]. Accumulating evidence indicate that GDM is 
associated with strong genetic predisposition. Over the 
past few decades, gene loci responsible for insulin secre-
tion and resistance and lipid and glucose metabolism 
have been found to be associated with GDM [17]. How-
ever, its genetics is complex and not fully defined.

Epoxyeicosatrienoic acids (EETs), metabolites of ara-
chidonic acid produced by cytochrome P450 enzymes 
(CYP450), exhibit multiple biological activities, including 
anti-inflammatory, vasodilatory, and electrophysiological 

effects [18–21]. Several in vitro and animal studies have 
suggested that CYP450-derived EETs exert protective 
effects on insulin sensitivity and glucose metabolism, 
which are critical processes in GDM development [22–
24]. In humans, the predominant epoxygenases involved 
in EET formation are CYP2J2, CYP2C8, and CYP2C9, 
which are encoded by the corresponding genes. Highly 
unstable EETs are hydrolysed to less active dihydroxye-
icosatrienoic acids (DHETs) by soluble epoxide hydrolase 
(sEH) encoded by EPHX2 [25, 26]. Previous studies have 
shown that single nucleotide polymorphisms (SNPs) in 
CYP2J2, CYP2C8, CYP2C9, and EPHX2 are associated with 
diabetes and diabetic kidney disease (DKD); however, 
their genetic effects on GDM remain unclear.

Therefore, to address this knowledge gap, the pres-
ent study was designed to investigate the association of 
common genetic variants of CYP2J2, CYP2C8, CYP2C9 
and EPHX2 with GDM, with the aim of providing novel 
genetic basis for GDM susceptibility.

Materials and methods
Ethics statement
The present study was approved by the Institutional 
Review Board (IRB) of the University of Hong Kong-
Shenzhen Hospital ([2017]13) and conducted according 
to the principles of the Declaration of Helsinki as revised 
in 2013. Written informed consent was obtained from 
each participant prior to enrolment.

Study design and participants
A total of 2548 Chinese women in early pregnancy were 
recruited between January 2016 and December 2018 
at the University of Hong Kong-Shenzhen Hospital. All 
participants routinely underwent a standard 75-g oral 
glucose tolerance test (OGTT) at 24–28 weeks of gesta-
tion after an overnight fast of at least eight hours [28]. 
According to the criteria recommended by the Inter-
national Association of Diabetes and Pregnancy Study 
Groups (IADPSG) [27], GDM was diagnosed if any of the 
following threshold values were equalled or exceeded: 
fasting plasma glucose: 5.1 mmol/L (92 mg/dL), one-hour 
plasma glucose (1  h-PG): 10.0 mmol/L (180  mg/dL), or 
two-hour plasma glucose (2 h-PG): 8.5 mmol/L (153 mg/
dL). Participants with diabetes antedating pregnancy 
were excluded. 

Clinical measurements
Information on demographics, family, and medical his-
tory of PCOS and GDM was collected using a standard 

GRS showed higher GDM susceptibility with higher fasting plasma glucose and area under the curve of glucose and 
poorer β-cell function.
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questionnaire. Weight and standing height were mea-
sured with light clothes and no shoes, according to 
standard protocols by trained investigators [29, 30]. Pre-
pregnancy weight was self-reported, and pre-pregnancy 
body mass index (BMI; kg/m2) was calculated as pre-
pregnancy weight (kg) divided by the square of height 
(m). Blood pressure measurements were performed in 
both arms using a mercury sphygmomanometer after a 
rest period of at least 5 min, and the arm with the higher 
reading was tested twice at 3-min intervals to calcu-
late the mean value [31]. Blood samples collected in the 
fasting status were used to measure the levels of fasting 
plasma glucose (FPG), fasting insulin (FINS), glycated 
haemoglobin A1c (HbA1c), total cholesterol, triglyceride, 
high-density lipoprotein cholesterol (HDL-C), and low-
density lipoprotein cholesterol (LDL-C); details of these 
biochemical measurements have been described previ-
ously by Lu W et al. [32, 33]. Homeostasis model assess-
ment of β-cell function (HOMA-β) and insulin resistance 
(HOMA-IR) were used to evaluate basal insulin secretion 
and insulin resistance, respectively, which were calcu-
lated using insulin and glucose concentrations as follows: 
HOMA-β = 20 × FINS (mU/L)/[FPG (mmol/L) − 3.5] and 
HOMA-IR = FINS (mU/L)/(22.5e− lnFPG (mmol/L)) [34, 35]. 
The area under curve of glucose (GAUC) from the 75-g 
OGTT was calculated as 1/2 × [FPG (mmol/L) + 1 h-PG 
(mmol/L)] × 1  h + 1/2 × [1  h-PG (mmol/L) + 2  h-PG 
(mmol/L)] × 1 h [36]. In addition, PCOS was diagnosed 
according to the revised 2003 consensus [37]. The birth 
of an infant before completion of 37 weeks of gestation 
was defined as preterm delivery. Macrosomia, preterm 

delivery, and caesarean delivery referred to current 
pregnancies.

SNP genotyping and quality control analysis
DNA was extracted from the peripheral blood using 
DNA Extraction Kit (Qiagen, Duesseldorf, Germany) 
according to the manufacturer’s instructions. The con-
centration of DNA in each sample was measured using 
NanoDrop2000 Spectrophotometer (Thermo Fisher 
Scientific, Waltham, MA). A 260/280 ratio of ~ 1.8 was 
generally accepted as “pure” for DNA. Genotyping was 
performed using Infinium Asian Screening Array-24 v1.0 
BeadChip (Illumina, Inc., San Diego, CA, United States). 
Four critical genes related to EET processing and degra-
dation pathways were selected. Genetic variants located 
within 3 kb upstream and 3 kb downstream of each gene 
region were extracted for further analysis [Fig. 1]. All sin-
gle nucleotide polymorphisms (SNPs) were filtered based 
on the Hardy-Weinberg equilibrium in controls (HWE; 
P < 0.01), minor allele frequency (MAF > 0.001), and suc-
cess rate (> 0.97) using the PLINK version 1.9 (https://
www.cog-genomics.org/plink/1.9/) [38]. Pairwise link-
age disequilibrium (LD) analysis was performed to obtain 
independent target SNPs using the Haploview version 4.2 
(https://www.broadinstitute.org/haploview/downloads) 
[39]. To avoid the inflation of the estimates due to link-
age disequilibrium, the threshold of r2 < 0.49 was used to 
select independent SNPs. Quality control procedures for 
individual samples required a call rate > 95%.

Fig. 1 Regional association plot of SNPs in CYP2J2 (A),EPHX2 (B), CYP2C8 (C), and CYP2C9 (D) with GDM. The most signifcant SNP of each gene is high-
lighted in black triangle. The -log10P-value for the associations are given at the y-axis and the chromosomal positions (Genome Reference Consortium 
Human Build 37, GRCh37) of the SNPs are plotted
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Statistical analysis
All data were collected on standard forms, checked for 
completeness, double-entered, compared, and corrected 
for inconsistencies. The normality of the distribution of 
continuous variables was tested using the Kolmogorov–
Smirnov test. Continuous variables with normal distri-
bution, that is, age, systolic blood pressure, and diastolic 
blood pressure were presented as the mean ± standard 
deviation (SD), and variables with non-normal distribu-
tion were reported as the median (interquartile range). 
Frequencies and proportions were used for categorical 
variables. The differences in mean, median, or frequency 
between groups were compared using independent sam-
ples Student’s t-test, Mann–Whitney U test, Kruskal–
Wallis test, or Pearson χ2 test, as appropriate. The HWE 
in the control group was calculated using chi-square 
goodness of fit test. Genotype and allele distributions 
were compared using χ2 test. Data with skewed distribu-
tion were logarithmically transformed before analysis. 
Association tests were performed within a linear or logis-
tic regression framework using the PLINK software. An 
additive genetic model was used to analyse allele dosage 
in which the genotypes AA, Aa, aa were coded as 0, 1, 
and 2, respectively (‘A’ represents the common allele and 
‘a’ represents the rare allele). Age, pre-pregnancy BMI, 
history of PCOS, history of GDM and family history of 
diabetes were included as covariates and adjusted using a 
multivariable regression model; unadjusted and adjusted 
odds ratios (OR) and 95% confidence intervals (95% CI) 
were calculated. Gene-gene interaction (SNP-SNP epis-
tasis) were performed by PLINK with a model based on 
allele dosage for each SNP, A and B, and fits in the form 
of ‘Y ~ b0 + b1.A + b2.B + b3.AB + e’. The test for interaction 
is based on the coefficient b3. All pairwise combinations 
of SNPs were tested. Multiple testing corrections were 
made using the Benjamini-Hochberg false discovery rate 
(FDR) method with a threshold of 0.05 for statistical sig-
nificance [40].

The number of risk alleles (zero, one, or two) is summed 
for 12 independent variants, to generate unweighted 
genetic risk scores (GRS). Moreover, a weighted GRS was 
generated for each individual by taking the sum of the 
weighted number of observed risk alleles, each risk allele 
weighted by SNP-specific per allele effect size (loge[OR]) 
from the single SNP analysis, and dividing by the mean 
per allele effect size for the SNPs. Association between 
GRS and GDM susceptibility was evaluated [41]. To bet-
ter interpret the results, the subjects were stratified into 
five GRS groups considering the distribution of GRS. 
We performed logistic regression analyses of the GRS 
groups against GDM case-control status and GRS group 
(1,2,3,4,5) was entered as a continuous variable. The 
association between GRS group and traits were analysed 
using linear regression. To better reflect the changing 

trend of metabolic traits across the GRS groups, trait 
levels were normalised using Z-scores, which were cal-
culated by subtracting the mean from the raw score and 
then dividing the difference by the standard deviation 
[42]. Restricted cubic splines (RCS) were implemented to 
detect potential nonlinear association of GRS with GDM 
and metabolic traits, and the RCS models were adjusted 
for covariates. All statistical analyses were performed 
using the IBM SPSS Statistics for Windows (version 25.0; 
IBM Corp., Armonk, New York, USA) and R software 
v.4.1.3. A P-value of less than 0.05 (two-sided test of sig-
nificance) was considered statistically significant.

Results
Subject characteristics
The clinical and demographic characteristics of the two 
groups are shown in Table 1. In total, 2548 participants 
were included in our study. Among them, 938 were diag-
nosed with GDM, and 1610 with normal glucose toler-
ance (NGT) were considered as controls. The mean age 
was 31.79  year (± 4.08), and the median gestational age 
at delivery was 39.29 weeks (38.57–40.00). Compared 
with the control group, pregnant women with GDM were 
older and more likely to report PCOS history, GDM his-
tory and family history of diabetes. Additionally, pre-
pregnancy BMI, blood pressure, lipid parameters (total 
cholesterol, triglyceride, LDL-C, and HDL-C), and gly-
caemic parameters (FPG, 1 h-PG, 2 h-PG, GAUC, HbA1c, 
and HOMA-IR) were significantly higher, and BMI 
changes during pregnancy and HOMA-β were signifi-
cantly lower in the GDM group than in the control group 
(all P < 0.001). There were no significant differences in the 
multiparous status, macrosomia, or primary caesarean 
delivery between the two groups (all P > 0.05).

Association between SNPs and GDM
We first examined the potential effects of these SNPs 
on GDM susceptibility in the study population. After 
the quality control procedure, 31 SNPs were included 
in the LD analysis [Suppl. Figure  1]. Among these, 
12 SNPs were selected for further analysis (r2 < 0.49). 
Table  2 presents the genotype and allele distribution of 
the 12 independent SNPs and the corresponding odds 
ratios for GDM. The A allele of rs61790001 in CYP2J2 
was the most significant SNP associated with GDM in 
the unadjusted model (OR 0.73 [95% CI 0.62–0.86], 
P = 0.0001). Considering the confounders, only 7 SNPs 
(rs61790001, rs76271683, rs57699806, rs11572177, 
rs9332092, rs4918758, and rs2860905) retained signifi-
cance after multiple testing corrections (FDR < 0.05). 
The missense variant rs57699806 in EPHX2 was associ-
ated with GDM (adjusted OR 1.46 [95% CI 1.10–1.93], 
FDR = 0.044). Moreover, only rs61790001 in CYP2J2 
presented a decresed risk of GDM (adjusted OR 0.73 
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[95% CI 0.61–0.86]). CYP2J2-rs76271683 and CYP2C8-
rs11572177 were associated with an increased risk of 
GDM (adjusted OR 1.27 [95% CI 1.07–1.49], 1.34[95% CI 
1.07–1.67]; FDR = 0.028, 0.046, respectively). The minor 
allele frequency(MAF) of these 12 SNPs in the current 
study and in other populations is shown in Suppl. Table 1.

Association between SNPs and metabolic traits
We subsequently analysed the association between 
SNPs and metabolic traits. As shown in Fig.  2, 
CYP2J2-rs76271683 was significantly associated 
with glucose indicators, including 1  h-PG (β = 0.011, 
SE = 0.003, FDR = 0.0125), 2  h-PG (β = 0.011, SE = 0.003, 

FDR = 0.0145), and GAUC (β = 0.010, SE = 0.003, 
FDR = 0.0047) [Suppl. Table  2]. Moreover, EPHX2-
rs57699806 and CYP2C8-rs11572177 were associated 
with higher level of 1 h-PG and GAUC after multiple test-
ing corrections (all FDR < 0.05), while CYP2C9-rs9332146 
was in negative association with 1 h-PG and GAUC [Suppl. 
Figure 2 A-B]. Both rs9332092 and rs2860905 in CYP2C9 
were associated with lower level of HOMA-β (β = -0.048, 
-0.034; SE = 0.018, 0.012, respectively) [Suppl. Table  3; 
Suppl. Figure  2D]. In addition, the A allele of CYP2J2-
rs144619025 was associated with lower LDL-C level 
(β = -0.033, SE = 0.010, FDR = 0.0164) [Suppl. Table  4; 
Suppl. Figure 2C]. However, no association was observed 

Table 1 Clinical characteristics of the GDM and control groups
Traits Overall 

(n = 2548)
Control 
(n = 1610)

GDM (n = 938) P

Age,yr 31.79 ± 4.08 31.59 ± 4.05 32.14 ± 4.11 0.001
Prepregnancy BMI,kg/m2 20.96 

(19.30–22.85)
20.81 
(19.22–22.66)

21.23 
(19.53–23.22)

< 0.001

Gestational age at delivery,weeks 39.29 
(38.57,40.00)

39.43 
(38.71–40.14)

39.14 
(38.29–40.00)

< 0.001

BMI change,kg/m2 5.02 (3.95–6.09) 5.34 (4.35–6.29) 4.43 (3.33–5.55) < 0.001
Systolic blood pressure, mmHg 109.08 ± 10.28 108.25 ± 9.86 110.50 ± 10.82 < 0.001
Diastolic blood pressure, mmHg 66.93 ± 8.20 66.27 ± 7.90 68.06 ± 8.57 < 0.001
Multiparous, n (%) 1167 (45.8) 727 (45.2) 440 (46.9) 0.392

History of GDM, n (%) 81 (3.2) 11 (0.7) 70 (7.5) < 0.001
History of PCOS, n (%) 26 (1.0) 3 (0.2) 23 (2.5) < 0.001
Family history of diabetes,n (%) 296 (11.6) 72 (4.5) 224 (23.9) < 0.001
FPG, mmol/L 4.47 (4.24–4.75) 4.39 (4.18–4.61) 4.68 (4.38–5.11) < 0.001
1 h-PG, mmol/L 8.28 (7.01–9.63) 7.50 (6.52–8.38) 10.06 

(9.12–10.63)
< 0.001

2 h-PG, mmol/L 7.09 (6.11–8.44) 6.46 (5.76–7.19) 8.79 (7.98–9.44) < 0.001
GAUC, mmol/L·h 14.09 

(12.39–16.05)
12.89 
(11.73–14.13)

16.54 
(15.67–17.55)

< 0.001

DCCT-HbA1c,a % 5.2 (5.0–5.4) 5.2 (5.0–5.3) 5.3 (5.1–5.5) < 0.001
IFCC-HbA1c,b mmol/mol 33.3 (31.1–35.5) 33.3 (31.1–34.4) 34.4 (32.2–36.6)

Fasting insulin, mU/L 8.96 (6.18–12.77) 8.85 (6.04–12.76) 9.10 (6.40–12.80) 0.126

HOMA-β 188.98 
(129.13–271.40)

208.77 
(145.65–297.65)

158.38 
(109.50–228.50)

< 0.001

HOMA-IR 1.79 (1.19–2.60) 1.71 (1.16–2.51) 1.90 (1.29–2.80) < 0.001
Total cholesterol, mmol/L 5.70 (4.96–6.66) 5.63 (4.87–6.43) 5.79 (5.10–6.50) < 0.001
Triglyceride, mmol/L 2.17 (1.71–2.83) 2.07 (1.64–2.73) 2.32 (1.88–2.94) < 0.001
LDL-C, mmol/L 2.94 (2.42–3.55) 2.80 (2.32–3.35) 3.24 (2.62–3.91) < 0.001
HDL-C, mmol/L 1.88 (1.61–2.16) 1.84 (1.58–2.12) 1.95 (1.66–2.25) < 0.001
Initial cesarean section c, n/total n(%) 405/2045 (19.8) 254/1299 (19.6) 151/746 (20.2) 0.707

Preterm delivery d, n(%) 124 (4.9) 62 (3.9) 62 (6.7) 0.002
Macrosomia e, n(%) 139 (5.5) 88 (5.5) 51 (5.5) 0.999

Insulin therapy, n(%) 97 (3.8) - 97 (10.3) < 0.001
Data are presented as the mean ± SD, median (interquartile range), or n (%). The Wilcoxon test was used for continuous variables with skewed distribution. The chi-
square test was used for categorical variables. P values < 0.05 are written in bold letters.

Abbreviations: BMI, body mass index; PCOS, polycystic ovary syndrome; FPG, fasting plasma glucose; 1 h-PG, oral glucose tolerance test (OGTT) one-hour plasma 
glucose; 2  h-PG, OGTT two-hour plasma glucose; GAUC, area under the curve of glucose from the 75-g OGTT; HbA1c, haemoglobin A1c; HDL-C, high-density 
lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; HOMA-β, homeostasis model assessment index of β-cell secretion; HOMA-IR, homeostasis 
model assessment of insulin resistance.
a Diabetes Control and Complications Trial (DCCT) units of HbA1c values. b International Federation of Clinical Chemistry (IFCC) units of HbA1c values.c woman 
without a history of caesarean section. d birth of an infant before completion of 37 weeks of gestation is defined as preterm delivery. e Excessive birth weight, usually 
defined as > 4000.



Page 6 of 12Lai et al. Nutrition Journal           (2023) 22:31 

Ta
bl

e 
2 

A
ss

oc
ia

tio
n 

be
tw

ee
n 

SN
Ps

 a
nd

 G
D

M
SN

P
Ch

r:b
p 

a
G

en
e

A
lle

le
M

A
F

Va
ri

an
t

ty
pe

Fr
eq

ue
nc

y
G

en
ot

yp
e 

co
un

t
Ca

se
/ 

Co
nt

ro
l

O
R 

(9
5%

 C
I)

P-
al

le
le

FD
R

Ca
se

Co
nt

ro
l

O
R 

(9
5%

 C
I)

P-
ge

no
ty

pe
FD

R

rs
61

79
00

01
1:

59
93

61
55

CY
P2

J2
A

/G
0.

15
3

in
tr

on
0.

12
8/

0.
16

8
0.

73
 (0

.6
2–

0.
86

)
0.

00
01

0.
00

94
22

/1
96

/7
20

45
/4

51
/1

11
3

0.
73

 (0
.6

1–
0.

86
)

0.
00

03
0.

00
26

s1
44

61
90

25
1:

59
93

75
79

CY
P2

J2
A

/G
0.

03
5

in
tr

on
0.

02
6/

0.
04

0
0.

62
 (0

.4
5–

0.
87

)
0.

00
55

0.
08

35
0/

48
/8

90
4/

12
2/

14
83

0.
68

 (0
.4

8–
0.

97
)

0.
03

54
0.

11
05

rs
76

27
16

83
1:

59
95

34
94

CY
P2

J2
G

/A
0.

16
7

in
tr

on
0.

18
6/

0.
15

7
1.

23
 (1

.0
6–

1.
43

)
0.

00
75

0.
09

50
27

/2
94

/6
17

36
/4

32
/1

14
2

1.
27

 (1
.0

7–
1.

49
)

0.
00

48
0.

02
80

rs
57

69
98

06
8:

27
36

25
87

EP
H

X2
A

/G
0.

04
7

m
is

se
ns

e
0.

05
4/

0.
04

2
1.

30
 

(1
.0

02
–1

.6
96

)
0.

04
79

0.
12

11
3/

96
/8

38
3/

13
0/

14
75

1.
46

 (1
.1

0–
1.

93
)

0.
00

87
0.

04
40

rs
34

31
92

90
8:

27
40

52
07

EP
H

X2
A

/G
0.

09
8

do
w

ns
tr

ea
m

0.
11

0/
0.

09
2

1.
22

 (1
.0

1–
1.

47
)

0.
03

93
0.

11
15

11
/1

83
/7

40
9/

27
5/

13
11

1.
27

 (1
.0

4–
1.

56
)

0.
02

10
0.

07
51

rs
11

57
21

77
10

:9
67

97
27

0
CY

P2
C8

G
/A

0.
07

6
in

tr
on

0.
08

5/
0.

07
0

1.
24

 (1
.0

0–
1.

53
)

0.
04

94
0.

12
11

6/
14

8/
78

4
8/

21
0/

13
92

1.
34

 (1
.0

7–
1.

67
)

0.
01

11
0.

04
62

rs
19

34
95

6
10

:9
68

28
16

0
CY

P2
C8

A
/G

0.
45

5
in

tr
on

0.
43

7/
0.

46
6

0.
89

 
(0

.7
93

–0
.9

98
)

0.
04

54
0.

12
11

17
2/

47
5/

29
1

35
1/

79
6/

46
2

0.
87

 (0
.7

7–
0.

99
)

0.
03

24
0.

10
45

rs
20

71
42

6
10

:9
68

28
32

3
CY

P2
C8

G
/A

0.
06

8
in

tr
on

0.
07

9/
0.

06
2

1.
29

 (1
.0

4–
1.

61
)

0.
02

20
0.

10
75

2/
14

4/
79

2
8/

18
4/

14
18

1.
35

 (1
.0

6–
1.

70
)

0.
01

39
0.

05
33

rs
93

32
09

2
10

:9
66

96
52

9
CY

P2
C9

G
/A

0.
04

5
up

st
re

am
0.

05
3/

0.
04

0
1.

34
 (1

.0
3–

1.
75

)
0.

03
08

0.
11

15
0/

10
0/

83
5

0/
13

0/
14

78
1.

54
 (1

.1
5–

2.
06

)
0.

00
33

0.
02

26
rs

49
18

75
8

10
:9

66
97

25
2

CY
P2

C9
G

/A
0.

39
0

up
st

re
am

0.
40

8/
0.

37
9

1.
13

 
(1

.0
07

–1
.2

70
)

0.
03

84
0.

11
15

14
9/

46
7/

32
1

22
2/

77
6/

61
2

1.
18

 (1
.0

4–
1.

34
)

0.
01

02
0.

04
47

rs
28

60
90

5
10

:9
67

02
29

5
CY

P2
C9

A
/G

0.
09

6
in

tr
on

0.
10

9/
0.

08
8

1.
26

 
(1

.0
44

–1
.5

26
)

0.
01

61
0.

09
54

10
/1

84
/7

44
14

/2
55

/1
33

6
1.

36
 (1

.1
1–

1.
66

)
0.

00
32

0.
02

26

rs
93

32
14

6
10

:9
67

22
24

4
CY

P2
C9

A
/G

0.
03

1
in

tr
on

0.
02

3/
0.

03
5

0.
65

 
(0

.4
60

–0
.9

31
)

0.
01

76
0.

09
54

0/
44

/8
93

2/
11

0/
14

96
0.

65
 (0

.4
4–

0.
95

)
0.

02
56

0.
08

83

A
bb

re
vi

at
io

ns
: C

hr
, c

hr
om

os
om

e;
 S

N
P,

 s
in

gl
e-

nu
cl

eo
tid

e 
po

ly
m

or
ph

is
m

; A
lle

le
, m

in
or

/m
aj

or
 a

lle
le

; M
A

F,
 m

in
or

 a
lle

le
 fr

eq
ue

nc
y;

 O
R,

 o
dd

s 
ra

tio
s;

 9
5%

 C
I, 

95
%

 c
on

fid
en

ce
 in

te
rv

al
; F

D
R,

 fa
ls

e 
di

sc
ov

er
y 

ra
te

.

N
ot

e:
 T

he
 P

-a
lle

le
 w

as
 d

er
iv

ed
 fr

om
 th

e 
co

m
pa

ris
on

 o
f t

he
 a

lle
le

 fr
eq

ue
nc

y 
be

tw
ee

n 
th

e 
G

D
M

 a
nd

 c
on

tr
ol

 g
ro

up
s.

 P
-g

en
ot

yp
e 

re
fe

rs
 to

 th
e 

co
m

pa
ris

on
 o

f g
en

ot
yp

e 
di

st
rib

ut
io

n 
be

tw
ee

n 
th

e 
ca

se
 g

ro
up

 a
nd

 c
on

tr
ol

 g
ro

up
, 

ad
ju

st
ed

 fo
r m

at
er

na
l a

ge
, p

re
-p

re
gn

an
cy

 B
M

I, 
hi

st
or

y 
of

 P
CO

S,
 h

is
to

ry
 o

f G
D

M
 a

nd
 fa

m
ily

 h
is

to
ry

 o
f d

ia
be

te
s u

si
ng

 lo
gi

st
ic

 re
gr

es
si

on
 a

na
ly

si
s i

n 
th

e 
ad

di
tiv

e 
ge

ne
tic

 m
od

el
; O

R 
w

ith
 9

5%
 C

I s
ho

w
s t

he
 a

ss
oc

ia
tio

n 
be

tw
ee

n 
th

e 
eff

ec
t a

lle
le

 a
nd

 G
D

M
. F

D
R 

va
lu

es
 <

 0
.0

5 
ar

e 
w

rit
te

n 
in

 b
ol

d 
le

tt
er

s.

a 
Po

si
tio

ns
 a

re
 b

as
ed

 o
n 

th
e 

H
um

an
 G

en
om

e 
ve

rs
io

n 
19

 (h
g1

9)
, b

ui
ld

 3
.



Page 7 of 12Lai et al. Nutrition Journal           (2023) 22:31 

between SNPs and fasting plasma glucose, HbA1c, fast-
ing insulin, HOMA-IR, total cholesterol, triglyceride, or 
HDL-C levels.

GRS of risk variants associated with GDM and metabolic 
traits
To evaluate population with higher susceptibility to 
GDM and determine whether it affected the assessment 
of GDM and metabolic traits in our study, genetic risk 
score (GRS) was generated based on the 12 independent 

SNPs. GRS (continuous) slightly increase the susceptibil-
ity to GDM (adjusted OR 1.07 [95% CI 1.02–1.13]). Then, 
to better interpret the results, the subjects were stratified 
into five risk groups considering the distribution of GRS 
[Fig.  3B]. Compared to GRS < 2 group, susceptibility to 
GDM increased in both unadjusted and adjusted mod-
els with the increase in the GRS[Figure 3  C]. The sub-
jects harbouring GRS of 2, 3, 4 and > 4 all presented an 
increased risk of GDM (adjusted OR 1.57 [95% CI 1.09–
2.26], 1.65 [95% CI 1.15–2.37], 1.81 [95% CI 1.24–2.65], 
and 1.80 [95% CI 1.24–2.63], respectively, all P < 0.05). 
Multivariable linear regression indicated that the median 
FPG and GAUC increased while the median HOMA-β 
decreased in higher GRS groups after adjusted for con-
founders (all P < 0.05). The heatmap shows the relative 
change trend of metabolic traits with the GRS [Fig. 3A] 
and the characteristics of the GRS groups are presented 
in Table  3. Overall, individuals with a higher GRS pre-
sented a higher susceptibility to GDM, higher FPG and 
GAUC and impaired insulin secretion than those with a 
lower GRS.

Gene-gene interaction
Gene-gene interaction (epistasis) analyses were carried 
out to avoid overlooking the heritability of GDM due 
to undiscovered interactions between them. After all 
pairwise combinations of the 12 SNPs were tested, only 
CYP2J2-rs76271683 and CYP2C8-rs11572177 exhibited 
significant epistatic effects on GDM susceptibility in all 

Fig. 3 Association of genetic risk score (GRS) based on 12 SNPs with GDM and metabolic traits. Heatmap of metabolic traits z-scores computed for differ-
ent GRS groups (A). Frequency distribution across the GRS groups (B). The histogram is plotted on the x-axis representing each GRS category as the sum 
of the number of risk alleles across the 12 loci, and the y-axis plots the number of individuals in each GRS category. Forest plot of the association between 
GRS and GDM (C). Adjusted OR and P-value refer to adjustment for maternal age, pre-pregnancy BMI, history of PCOS, history of GDM, and family history 
of diabetes

 

Fig. 2 Association between CYP2J2-rs76271683 and metabolic traits. Me-
dian values and 95% CI of blood glucose (A) and box plot of area under 
the curve of glucose (GAUC) (B) indicate that the glucose level was signifi-
cantly higher in the minor allele carrier group. A: major allele; a: minor al-
lele. Within each box, horizontal lines denote median values; boxes extend 
from the 25th to the 75th percentile of each group’s distribution of values; 
whiskers above and below the box indicate the 5th and 95th percentiles. 
Points above and below the whiskers indicate outliers
*P < 0.05 vs. AA group after adjusted for maternal age, pre-pregnancy BMI, 
history of PCOS, history of GDM and family history of diabetes
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subjects (PInteraction = 0.014, ORInteraction = 0.61, 95%CI 
0.41–0.90) [Suppl.Table  5]. The proportion of patients 
with GDM increased in subgroups with a greater number 
of risk alleles [Fig. 4].

Discussion
Several genome-wide association studies (GWAS) and 
candidate gene association studies have been performed 
to examine the association between genetic variants 
and the risk of GDM, which can be utilised to identify 
individuals at high risk for GDM or in the early stage of 
the disease. Notwithstanding, these studies have largely 
focused on common variants known to be associated 
with T2D and glycaemic traits outside of pregnancy 
based on the hypothesis that a shared genetic architec-
ture exists between GDM and T2D [32, 43]. For example, 
TCF7L2, GCK, KCNJ11, CDKAL1, IGF2BP2, and MTNR1B are 
thought to modulate pancreatic islet β-cell function, all 
of which were associated with GDM (OR 1.15–1.46) [44, 
45]. EETs are epoxygenase derivatives of arachidonic acid 
and closely related to pancreatic β-cell function, insulin 
resistance, glucose homeostasis, and other pathophysi-
ological processes of glucose metabolism. Preclinical 
studies have consistently shown a protective role of EETs 
in the aetiology and progression of various metabolic dis-
eases, such as diabetes and its complications [46]. Back 
in 1983, EETs were shown to stimulate insulin secretion 
in isolated rat islets and were relatively regioselective 
for EET formation [47], involving three critical genes 
(CYP2C8, CYP2C9, and CYP2J2). In addition to produc-
tion of EETs and anti-inflammatory process, these genes 
are also involved in both insulin sensitivity in peripheral 

tissues and the capacity of the islets to respond to insu-
lin resistance [48, 49]. CYP-derived EETs induce insulin 
secretion and protect pancreatic islet cells from apopto-
sis [50, 51]. Previous study indicated that CYP2J3 over-
expression improved insulin resistance in rats treated 
with fructose and in db/db diabetic mice, improving 
insulin resistance by activating insulin receptor signal-
ing and adiponectin-mediated AMPK signaling pathways 
[51, 52]. CYP2J3 gene delivery markedly reversed insulin 
resistance via upregulated AMPK signaling, which was 
associated with decreased ER stress response in adipose 
tissue [51]. The CYP2C gene family locus is highly poly-
morphic. Previous studies have indicated that CYP2J2 
G-50T polymorphism (rs890293) was significantly associ-
ated with younger onset (less than 40 years old) T2D in a 
Chinese population. CYP2C8-rs10509681 was associated 
with an increased risk of DKD [53]. Our results dem-
onstrated that both CYP2J2-rs76271683 and CYP2C8-
rs11572177 were associated with an increased risk of 
GDM. In addition, the G allele of rs76271683 was asso-
ciated with glucose metabolism indicators, including 
1  h-PG, 2  h-PG, and GAUC. EPHX2 encodes the enzyme 
(sEH) responsible for the hydrolysis of EETs. EPHX2 
rs751141 (Arg287Gln) polymorphism has been reported 
to be associated with insulin resistance in patients with 
T2D in Japanese population [54]. In our study, we found 
that the missense variant rs57699806 in EPHX2 was not 
only associated with an increased risk of GDM, but also 
with a higher level of 1 h-PG and GAUC.

GDM appears to influence the transfer of PUFAs from 
mothers to fetuses, which may affect the development 
of the fetal brain and impair the cognitive ability of the 

Table 3 Association of GRS based on 12 SNPs with metabolic traits
Traits GRS < 2 (n = 217) GRS = 2 (n = 656) GRS = 3 (n = 691) GRS = 4 (n = 459) GRS > 4 (n = 486) β SE P
Age, yr 31.94 ± 3.86 31.83 ± 4.14 31.97 ± 4.11 31.52 ± 3.89 31.65 ± 4.21 - - -

Pre-pregnancy BMI, kg/
m2

20.81 
(19.53–22.77)

21.21 
(19.40–22.86)

21.03 
(19.47–22.89)

20.81 
(19.23–22.86)

20.77 
(19.03–22.66)

- - -

FPG, mmol/L 4.41 (4.20–4.66) 4.47 (4.25–4.75) 4.47 (4.23–4.76) 4.49 (4.22–4.76) 4.48 (4.25–4.76) 0.002 0.001 0.002
1 h-PG, mmol/L 8.30 (7.00–9.46) 8.31 (7.07–9.64) 8.29 (7.10–9.60) 8.16 (6.90–9.68) 8.32 (7.02–9.68) 0.002 0.001 0.109

2 h-PG, mmol/L 6.85 (6.01–8.12) 7.11 (6.21–8.51) 7.09 (6.07–8.40) 7.06 (6.10–8.54) 7.23 (6.11–8.49) 0.002 0.001 0.118

GAUC, mmol/L·h 13.87 
(12.29–15.78)

14.16 
(12.49–16.06)

14.15 
(12.39–16.08)

13.99 
(12.31–16.13)

14.12 
(12.38–16.17)

0.002 0.001 0.044

DCCT-HbA1c, % 5.20 (5.00–5.40) 5.20 (5.00–5.40) 5.20 (5.00–5.38) 5.20 (5.00–5.40) 5.20 (5.00–5.40) 1.92E-4 0.002 0.662

Total cholesterol, mmol/L 5.69 (4.98–6.52) 5.72 (4.90–6.45) 5.70 (4.97–6.52) 5.65 (5.00–6.40) 5.70 (4.90–6.40) 1.51E-4 0.003 0.932

Triglyceride, mmol/L 2.10 (1.69–2.75) 2.20 (1.74–2.79) 2.16 (1.71–2.85) 2.14 (1.68–2.82) 2.18 (1.71–2.90) 0.004 0.003 0.172

LDL-C, mmol/L 2.92 (2.41–3.48) 2.95 (2.44–3.57) 3.00 (2.44–3.62) 2.89 (2.36–3.47) 2.94 (2.45–3.55) -0.001 0.008 0.787

HDL-C, mmol/L 1.91 (1.71–2.18) 1.85 (1.59–2.16) 1.89 (1.61–2.15) 1.90 (1.57–2.20) 1.90 (1.59–2.16) 0.001 0.002 0.552

Fasting insulin, mU/L 8.46 (5.98–12.05) 9.52 (6.26–13.37) 8.96 (6.31–12.36) 9.12 (6.26–13.14) 8.53 (5.79–12.54) -0.002 0.004 0.620

HOMA-IR 1.67 (1.15–2.40) 1.90 (1.20–2.71) 1.78 (1.23–2.53) 1.84 (1.19–2.73) 1.71 (1.15–2.58) 6.58E-5 0.004 0.987

HOMA-β 193.42 
(127.05–275.63)

197.38 
(130.54–281.43)

186.62 
(128.72–272.83)

195.48 
(133.02–275.91)

174.60 
(125.05–256.99)

-0.010 0.004 0.017

Data are presented as the mean ± SD or median (interquartile range)

The association between GRS groups (1,2,3,4,5) and traits were analysed using linear regression adjusted for maternal age, pre-pregnancy BMI, history of PCOS, 
history of GDM, and family history of diabetes. P values < 0.05 are written in bold letters
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infant [55]. Ortega-Senovilla et al. proposed that there is 
a higher requirement for maternal fatty acids (both AA 
and DHA) in the fetuses of women with GDM than in 
those without GDM [56]. We found that individuals with 
certain variants in genes involved in epoxyeicosatrienoic 
acid (EET) processing and degradation pathways showed 
higher susceptibility to GDM. Considering variants may 
affect activity or yield of cytochrome P450 enzymes, and 
thus the substrate arachidonic acid content, individuals 
with certain variants may need to supplement more ara-
chidonic acid, especially for pregnant women.

The discovery of multiple loci associated with GDM 
has demanded investigation of its clinical implications. 
The most common disease-associated genetic variants 
have a small effect size and are likely to explain only a 
limited fraction of heritability [43]. Thus, we attempted 
to aggregate the information of variants by constructing 
genetic risk scores. Weighted GRS is often based on the 
effect size reported in prior GWAS summary statistics. 
Therefore, a simple GRS was first used because for the 
risk alleles included there was inadequate information 
in the literature to assign a weight. An unweighted GRS 

was generated based on 12 risk variants by summing the 
number of risk alleles (zero, one, or two) for variants and 
subjects were stratified into five groups considering the 
distribution of GRS [41]. Correlation of GRS with GDM 
susceptibility was tested and we found that the GRS > 4 
group had a nearly 1.80-fold increased susceptibility to 
GDM (adjusted OR 1.80 [95% CI 1.24–2.63]) than that 
of the lowest GRS group. After analysis of restricted 
cubic spline (RCS) regression between GRS and meta-
bolic traits, only total cholesterol showed a significant 
nonlinear relationship between GRS (P for nonlinear-
ity = 0.0038) [Suppl. Figure 3F]. Association between GRS 
groups and metabolic traits was evaluated and individuals 
with higher GRS had higher FPG and GAUC and poorer 
β-cell function. We further used the effect sizes from 
the single SNP analysis (Table 2) to construct a weighted 
GRS. Restricted cubic spline (RCS) analysis showed a sig-
nificant nonlinear relationship between weighted GRS 
and GDM (P for nonlinearity = 0.0133) [Suppl. Figure 4], 
according to which 0 and 10 were selected as the cutoff 
values of weighted GRS. Subjects with weighted GRS > 10 
had a nearly 2.22-fold increased susceptibility to GDM 

Fig. 4 Epistatic analysis between rs76271683 in CYP2J2 and rs11572177 in CYP2C8. The percentage of patients with GDM based on the genotypes is 
shown
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(adjusted OR 2.22 [95% CI 1.64–2.99]) than GRS < 0 
group [Suppl. Figure 5]. Our results highlight the value of 
the GRS based on the EETs pathway in GDM risk assess-
ment in the Chinese population.

Complementing simple additive main effects of indi-
vidual loci, gene-gene interactions (epistasis) can explain 
some of the unexplained heritability of common diseases 
[57]. Fisher [58] defined epistasis in a statistical manner 
as an explanation for deviation from additivity in a linear 
model. In our study, a significant interaction (epistasis) 
was identified between CYP2J2-rs76271683 and CYP2C8-
rs11572177, suggesting that individuals carrying variants 
of both genes might be more susceptible to GDM than 
those carrying variants in single genes. However, statis-
tical interaction does not necessarily imply interaction 
on the biological or mechanistic level and it is a chal-
lenge to go from a population-level statistical gene-gene 
interaction to the biological interactions occurring at the 
cellular level [59]. But they do suggest directions for the 
discovery of biological interactions.

To the best of our knowledge, this is the first study to 
suggest a genetic association between polymorphisms 
in the EET pathway and GDM, which can provide novel 
insights into the genetic architecture and aetiology of 
GDM. This study has several limitations. First, it was 
conducted only in Chinese population, which could lead 
to inherent bias or ethnicity-specific observations. Thus, 
further studies in other ethnic populations are needed. 
Second, while the analysis of genetic polymorphism in 
EET metabolic pathways supports its association with 
GDM and indicates possible risk factors, the potential 
relationship between enzyme activity and EET levels and 
its roles in the pathogenesis of GDM remain to be inves-
tigated. Therefore, further functional assays are neces-
sary to explore the underlying functions and mechanisms 
of these polymorphisms. Third, lifestyle factors, such as 
cigarette smoking and dietary pattern were not included 
in the genotype-disease analysis. Prudent dietary pat-
tern which is characterised by a high intake of fruit, 
green leafy vegetables, poultry, and fish was significantly 
and inversely associated with GDM risk and smoking 
has been found to increase the risk of developing GDM 
[60–62]. However, whether interactions existed between 
lifestyle factors and genetic variants remains unknown. 
Finally, we adopted an unusual threshold (r2 < 0.49) for 
SNPs selection, which may have caused the inclusion of 
non-independent SNPs in the GRS model and may have 
inflated the estimates.

Conclusion
Our study suggests that common SNPs in key genes of 
EET processing and degradation pathways are associated 
with GDM in Chinese population. The GRS based on 12 
independent SNPs was found to be positively associated 

with GDM. The mechanisms by which CYP2C8, CYP2C9, 
CYP2J2, and EPHX2 influence GDM susceptibility war-
rant further investigation.
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