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Abstract

Background: Identifying leading dietary determinants for cardiometabolic risk (CMR) factors is urgent for
prioritizing interventions in children. We aimed to identify leading dietary determinants for the change in CMR and
create a healthy diet score (HDS) to predict CMR in children.

Methods: We included 5676 children aged 6–13 years in the final analysis with physical examinations, blood tests,
and diets assessed at baseline and one year later. CMR score (CMRS) was computed by summing Z-scores of waist
circumference, an average of systolic and diastolic blood pressure (SBP and DBP), fasting glucose, high-density
lipoprotein cholesterol (HDL-C, multiplying by − 1), and triglycerides. Machine learning was used to identify leading
dietary determinants for CMR and an HDS was then computed.

Results: The nine leading predictors for CMRS were refined grains, seafood, fried foods, sugar-sweetened
beverages, wheat, red meat other than pork, rice, fungi and algae, and roots and tubers with the contribution
ranging from 3.9 to 19.6% of the total variance. Diets high in seafood, rice, and red meat other than pork but low
in other six food groups were associated with a favorable change in CMRS. The HDS was computed based on these
nine dietary factors. Children with HDS ≥8 had a higher decrease in CMRS (β (95% CI): − 1.02 (− 1.31, − 0.73)), BMI
(− 0.08 (− 0.16, − 0.00)), SBP (− 0.46 (− 0.58, − 0.34)), DBP (− 0.46 (− 0.58, − 0.34)), mean arterial pressure (− 0.50 (−
0.62, − 0.38)), fasting glucose (− 0.22 (− 0.32, − 0.11)), insulin (− 0.52 (− 0.71, − 0.32)), and HOMA-IR (− 0.55 (− 0.73, −
0.36)) compared to those with HDS ≦3. Improved HDS during follow-up was associated with favorable changes in
CMRS, BMI, percent body fat, SBP, DBP, mean arterial pressure, HDL-C, fasting glucose, insulin, and HOMA-IR.
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Conclusion: Diets high in seafood, rice, and red meat other than pork and low in refined grains, fried foods, sugar-
sweetened beverages, and wheat are leading healthy dietary factors for metabolic health in children. HDS is
strongly predictive of CMR factors.

Keywords: Cardiometabolic risk factors, Leading dietary determinants, Healthy diet score, Machine learning, Children

Introduction
The pandemic and increasing trend of obesity-related
cardiometabolic risk (CMR) factors are a public health
challenge globally [1, 2]. Data from the China Health
and Nutrition Survey (CHNS) in 2009 showed that there
was a high prevalence of CMR factors in both children
and adults [3], which imposes a tremendous burden on
health care systems. Childhood CMR factors are highly
likely to persist into adulthood and are associated with
cardiovascular disease, diabetes, and mortality in the
future [4–8]. Therefore, it is imperative to slow or
reverse the increasing trend in the prevalence of CMR
factors at an early stage of life [9, 10].
Diet is of paramount importance for the prevention of

CMR factors [11]. Strong evidence from adults has
shown that diets low in processed food, sugar-sweetened
beverages (SSBs), and carbohydrate, and high in dairy
and fish are associated with lower risks of cardiometa-
bolic disorders including obesity, cardiovascular disease,
diabetes, dyslipidemia, and hypertension [12, 13].
However, consumption of individual foods has not been
demonstrated to be strongly predictive of CMR factors
in children. A recent systematic review has shown that
significant associations between dietary intakes and
obesity-related CMR factors were observed in 19% of the
81 included studies in children [14]. Previous studies are
also limited by small sample sizes, cross-sectional design,
or failure to adjust for important confounders. Although
dietary patterns have been well linked to CMR factors in
children in some countries [15–17], they cannot be
applied to other populations given that a healthy diet
pattern in one study can be hardly derived from other
studies. For example, a healthy diet pattern in one study
was high in vegetables, fruits, and dairy [15], while a
healthy pattern in another study was high in vegetables,
fruits, fish, crackers, and bread [17]. Diet indices have
also been developed for diet quality assessment, how-
ever, these indices are shown to be weak predictors of
CMR factors [18, 19]. Identifying leading dietary deter-
minants for changes in CMR factors using new methods
is urgent for targeting intervention priorities for the
prevention of CMR in children. It is also important to
create a healthy diet score (HDS) to predict CMR factors
in children.
We used machine learning techniques to identify lead-

ing dietary determinants for changes in CMR factors in

children based on longitudinal data. We then created an
HDS based on the identified leading determinants to
predict CMR factors.

Methods
Participant selection
The present analysis was based on a multicenter, ran-
domized cluster controlled trial and the full description
of the study has been published elsewhere [20]. Briefly,
the study was conducted in six capital or province
capital cities including Beijing, Shanghai, Chongqing,
Jinan, Harbin, and Guangzhou. Data were collected at
both baseline (May 2009) and follow-up (May 2010).
Children in the intervention group received nutrition
lectures (knowledge, attitudes, and dietary habits) as well
as participated in two times of ten minutes or one time
20min of Happy 10 program per day (involves various
physical activities such as games, dances, and gymnas-
tics, which were designed to stimulate children to enjoy
physical activity). A total of 9901 children from 390
classes within 38 schools were screened for eligibility.
Among 9867 children who were assessed at baseline,
8572 were reassessed at follow-up. Participants whose
dietary intakes were not assessed, those who fell in the
top (3500 Kcal/day) or bottom (300 Kcal/day) percentile
of total energy intake, and who had missing values in all
cardiometabolic measurements were excluded (n = 2896).
A total of 5676 participants were included in the final
analysis (Fig. 1).
The study protocol was approved by the Ethical Review

Committee of the National Institute for Nutrition and
Food Safety, Chinese Centre for Disease Control and
Prevention. Written informed consent was obtained from
the next of kin, carers, or guardians of all participants.

Dietary assessment
Dietary intake was assessed using 24-h diet recalls for
three consecutive days including two weekdays and one
weekend day in children in grades 2–5. Interviews were
conducted by trained investigators. During the interview,
samples of local household dishes and utensils (different
sizes of bowls, plates, and spoons) were displayed to the
children. They were then shown pictures of common
foods eaten in these dishes or utensils to indicate por-
tion size consumed. The interviewer and the tutor would
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help children recall food intake at school while parents
would help recall foods consumed at home.
A total of 1169 different food items were collected

among all children and they were categorized into 26
groups according to nutrient contents as below: rice
(boiled), wheat (such as steamed bun, noodles, and brans),
refined grains (such as white breads, pizza, muffins, pan-
cakes, and granola bar made by further processing grain
powder), other cereals (such as corn, millet, and sorghum),
fried foods, nuts and legumes (such as peanuts, walnuts,
beans, and soybean products), starch roots and tubers,
deep color vegetables, light color vegetables, edible fungi
and algae (such as mushrooms, agaric, seaweed, and kelp),
pickled vegetables (such as pickled mustard root, pickled
sweet garlic, pickled cucumber, and pickled radish), fruits,
pork, poultry, red meat other than pork (beef, lamb, other
red meat), animal offal, processed meat (such as ham, beef
jerky, and luncheon meat), seafood (such as fish, lobster,
and crab), eggs, milk, yogurt, dairy product (such as milk
powder and cheese), catsup and other sources, SSBs,
candy and sugar, and dessert. Deep color vegetables were
classified as carotene content ≥500 μg/100 g and light
color vegetable with carotene < 500 μg/100 g. Nutrients
and energy intake was calculated based on the China Food
Composition [21]. The average amount of food and nutri-
ent intake per day was calculated and energy-adjusted
food and nutrient consumption were computed as ([100 ×
weight in grams]/total energy intake in Kcal).

Confounders
Puberty status was recorded by investigators during the
interview when physical examinations were conducted.
Physical activity was assessed using a validated question-
naire in children, from which metabolic equivalent
(MET) was calculated [22]. The questionnaire is a 39-
item self-administered questionnaire that captures the
number of days in the past week, times per day, and the
number of minutes per time engaging in the physical
activity. MET was calculated according to the assigned
metabolic values for each specified physical activity.
Birthweight, household income, parental education, and
parental height and weight were reported by parents
using a self-administered questionnaire.

Physical examinations and blood tests
Physical examinations and blood tests (10–14 h fasting
beforehand) were performed at both baseline and
follow-up following standardized procedures.
Height was measured to the nearest 0.1 cm and weight

to the nearest 0.1 kg. Body mass index (BMI) was
computed as weight in kilograms divided by the square
of height in meters. Waist circumference (WC) was
measured midway between the lowest rib and the super-
ior border of the iliac crest on expiration to the nearest
0.1 cm and the average of two measurements was used.
Body composition was assessed using a single fre-

quency (50 Hz) hand to foot bioelectrical impendence

Fig. 1 Flowchart for population section
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device (ImpDF50, Impedimed Pty Ltd., Qld, Australia).
Body fat mass was computed using the prediction
formula developed by Deurenberg et al. [23] and percent
body fat (PBF) was calculated as fat mass divided by
body weight.
Blood pressure was measured in the seated position

using a mercury sphygmomanometer (XJ300/40–1,
Made in Shanghai) by trained nurses with at least 10
min rest before the measurement. The first and the fifth
Korotkoff sounds were used to represent the systolic and
diastolic blood pressure (SBP and DBP). Three measure-
ments were taken to the nearest two mmHg and the average
of the last two measurements was used. Mean arterial pres-
sure (MAP) was calculated as (DBP + 0.33 × [SBP-DBP]).
Fasting glucose was measured using the glucose-

oxidize method (Daiichi Pharmaceutical Co., Ltd.,
Tokyo, Japan) within four hours after the fasting blood
sample was obtained. Fasting insulin was measured
using the immunoenzymatic method (analyzer AXSYM,
Abbott Co., Ltd., Japan). The homeostatic model assess-
ment of insulin resistance (HOMA-IR) was computed as
(fasting insulin [μU/L] × fasting glucose [mg/dL])/405.
Conventional enzymatic assays were used to measure

levels of serum triglycerides (TG), total cholesterol (TC),
high-density lipoprotein cholesterol (HDL-C), low-density
lipoprotein cholesterol (LDL-C) with 7080 Automatic
Analyzer (Daiichi Pharmaceutical Co., Ltd., Tokyo, Japan).

Statistical analysis
BMI, WC, PBF, SBP, DBP, MAP, TG, TC, HDL-C, LDL-
C, TG to HDL-C ratio, fasting glucose, insulin, and
HOMA-IR were standardized (i.e. Z scores were calcu-
lated: Z = (value−mean)/SD using sex- and age-specific
means and SDs). CMR score (CMRS) was calculated by
summing Z scores of WC, the average of SBP and DBP,
fasting glucose, HDL-C (multiplying by − 1), and TG [24].
We randomly selected 50% of all participants in the

intervention study as training data and the remaining as
testing data. We used three established machine learning
models including multiple linear regression model,
random forest, and gradient boost machine (GBM) to
analyze the importance of 26 dietary predictors (base-
line) for the change in CMRS based on the training data
and compared the performance of these models based
on the testing data. For multiple linear regression model,
we selected Gaussian family distribution when estab-
lished prediction model using machine learning tech-
niques. The hyper-parameters alpha and lambda specify
the regularization strength and the regularization distri-
bution between L1 (LASSO) and (ridge regression) L2
penalties, respectively. The random forest algorithm is a
supervised learning algorithm constructing an ensemble
of decision-trees using randomly bootstrapping sample
datasets and averaging predictions of its trees [25]. It

applies a bagging method to ensemble multiple decision
trees generated from subsets to reduce correlations
among the constitute decision trees. In this study, we
used the R-square to determine the best predicting vari-
able and location for each tree split in our algorithm.
We grew the forest with 500 trees and implemented a
grid search to obtain optimal parameters including the
number of variables randomly sampled as candidates at
each split and the max depth of each tree (effectively the
number of interactions are considered in the model) for
the random forest.
GBM belongs to a family of machine learning

approaches leveraging a boosting ensemble method. An
ensemble of decision-trees was constructed using a
weighted average of trees with more weight to those
with a better performance [26]. GBM converts a weak
original learning algorithm to a strong one by minimiz-
ing an exponential loss of the misclassification rate. A
forest of 500 trees was applied and a grid search for
model optimization was also conducted with the max-
imum number of models, the max depth of each tree,
learning rate, row sample rate per tree, and column sam-
ple rate as hyper-parameters. Five-Fold cross-validation
was applied to test if the models were overfitting.
Regularization was conducted, and optimal parameters
were used in modeling (Table S1). We realized these
modeling exercises using the statistical software R 3.4.1
(toolbox h2o). Leading dietary factors were obtained ac-
cording to their contribution derived from the machine
learning method with the best performance.
A healthy diet score (HDS) was computed by summing

sub-scores with each of the leading dietary predictors as
one point according to their associations with CMRS.
For example, more than the median intake of fruit was
scored as 1 and equal or less as 0, if fruit intake was
inversely associated with CMRS. We also calculated a
HDS by summing weighted sub-scores according to the
contribution of the corresponding dietary predictors
derived from the machine learning method. ANOVA for
continuous variables and Chi-square tests for categorical
variables were performed to compare the difference of
baseline characteristics across HDS.
Since the interaction between intervention/sex and

HDS for changes in most CMR factors was not signifi-
cant (Table S2 and S3), we did the analysis for the asso-
ciation between HDS and CMR factors in the whole
population.
The general linear regression model (GLM) was used

to test the difference in changes in CMR factors between
participants with different HDS. We tested the following
models: 1) classes in schools were adjusted for as
random effects and characteristics of the individuals in-
cluding age, sex, and corresponding CMR factor at base-
line as fixed effects; 2) model 1 plus intervention group,
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grade, puberty, BMI, physical activity, and intake of
energy, fiber, vegetable, fruit, pork, legumes, and nuts at
baseline; 3) model 2 plus birth weight, breastfeeding,
household income, parental BMI and education. We
used the Benjamin-Hochberg procedure to control the
false discovery rate at level of 5% for multiple compari-
sons [27]. Bonferroni P-value adjustments were per-
formed for all pairwise comparisons. The association
between change in HDS and changes in CMR factors
was also tested using GLM. Changes in CMR factors
were calculated by subtracting the results at baseline
from those at follow-up. HDS at follow-up was calcu-
lated based on the nine leading dietary determinants and
improved HDS referred to an increase in HDS (subtract-
ing HDS at baseline from that at follow-up). For individ-
ual CMR factors, a standardized mean difference of 0.2,
0.5, and ≥ 0.8 represents a small, medium, and large
effect size, respectively. As CMRS is the summing of Z-
scores of five components, a standardized mean differ-
ence of 1.0, 2.5, and ≥ 4.0 represents a small, medium,
and large effect size, respectively [28].
We did an interaction analysis to examine whether the

association between HDS and CMRS was modified by
sex, grade, birthweight, household income, parental
BMI, and parental education.
We repeated the analysis for the association between

HDS and changes in CMR factors in children in the con-
trol group. We also did external validation of our HDS
in children aged 6–13 years from CHNS with diet and
physical examinations measured in two or more surveys.
Analyses except modeling machine learning were

performed using SAS version 9.4 (SAS Institute Inc.)
and all P values were two-sided.

Results
We included 5676 children (50.5% girls) aged 6–13 years
(mean ± SD: 9.54 ± 1.19) in the final analysis. HDS was
inversely associated with age, BMI, WC, PBF, and DBP
at baseline and positively associated with TC, HDL-C,
and LDL-C at baseline. There was not a significant asso-
ciation of HDS with CMRS at baseline. Higher HDS was
associated with lower intake of energy, carbohydrate, fat,
fiber, and iron and higher intake of protein, vitamin C,
vitamin E, and carotene (Table 1).

Importance of contributors to CMRS
Random Forest exhibited higher R-square compared
with the other two machine learning models for CMRS
(Table S4). Figure 2 depicts the leading predictors for
CMRS as derived from Random Forest. The nine leading
predictors for CMRS were refined grains, seafood, fried
foods, SSBs, wheat, red meat other than pork, rice, fungi
and algae, and roots and tubers with the contribution
ranging from 3.9 to 19.6% of the total variance. These

leading predictors were consistent with those identified
by GBM and GLM (Table S5).

Dietary intakes and CMRS and healthy diet score
Diets low in refined grains, fried foods, SSBs, wheat, fungi
and algae, roots and tubers and high in seafood, rice, and
red meat other than pork were associated with a favorable
change in CMRS (Table 2). HDS was then computed by
summing sub-scores with each of the nine leading healthy
factors as one point (according to their associations with
CMRS): refined grains (<median), seafood (>median), fried
foods (<median), SSBs (<median), wheat (<median), red
meat other than pork (>median), rice (>median), fungi
and algae (<median), and roots and tubers (<median).
HDS ranged from 0 to 9 with a higher level representing a
healthier diet. HDS was also calculated by summing the
weighted sub-scores according to the contribution derived
from the Random Forest. The maximum sub-score of 1
was set at the levels of 0 (refined grains, fried foods, SSBs,
wheat, fungi and algae, and roots and tubers) or above the
80th percentile (seafood, rice, and red meat other than
pork) of the food intake. While the minimum score of 0
was set at the levels of above the 80th percentile (refined
grains, fried foods, SSBs, wheat, fungi and algae, and roots
and tubers) or 0 (seafood, rice, and red meat other than
pork) of the food intake. Scores for the amounts between
0 and 1 were prorated linearly. The sub-scores were then
weighted by multiplying the contribution (percentage of
the total variance of the nine dietary predictors) of the
corresponding dietary predictors (Table S6).

Healthy diet score and CMR factors
High HDS at baseline was associated with favorable
changes in CMRS, BMI, PBF, SBP, DBP, MAP, HDL-C,
fasting glucose, insulin, and HOMA-IR. There was a posi-
tive association between HDS at baseline and changes in
TC and LDL-C (Table 3). High weighted HDS at baseline
was associated with favorable changes in CMRS, BMI,
PBF, SBP, DBP, MAP, HDL-C, fasting glucose, insulin,
and HOMA-IR (Table S7). Improved HDS was associated
with favorable changes in BMI, SBP, DBP, MAP, fasting
glucose, insulin, HOMA-IR, and CMRS (Table S8).

Moderation analysis
The inverse association between HDS and CMRS was
stronger in children whose parents had higher education
(Fig. 3). No significant interaction between HDS and sex,
grade, birthweight, household income, or parental BMI
for change in CMRS was observed.

Sensitivity analysis
High HDS at baseline was associated with favorable
changes in CMRS, PBF, SBP, DBP, MAP, HDL-C, TG,
insulin, and HOMA-IR in the control group (Table S9).
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Table 1 Baseline characteristics by healthy diet score

Healthy Diet Score* P value†

≤3 (n = 861) 4 (n = 1021) 5 (n = 1328) 6 (n = 1420) 7 (n = 773) ≥8 (n = 299)

Age (years) 9.75 ± 1.29‡ 9.57 ± 1.18 9.49 ± 1.15 9.44 ± 1.19 9.56 ± 1.11 9.47 ± 1.14 < 0.0001

BMI (kg/m2) 17.50 ± 3.55 17.23 ± 3.21 17.31 ± 3.20 17.04 ± 3.09 17.02 ± 2.93 16.79 ± 2.87 < 0.0001

WC (cm) 59.30 ± 9.50 58.94 ± 9.32 58.67 ± 8.76 57.83 ± 8.61 58.04 ± 8.19 57.49 ± 8.07 < 0.0001

PBF (%) 24.65 ± 4.65 24.32 ± 4.66 24.22 ± 4.91 23.53 ± 4.92 23.26 ± 4.84 23.01 ± 4.72 < 0.0001

SBP (mm Hg) 101.21 ± 11.09 100.92 ± 10.80 100.37 ± 10.89 100.24 ± 10.98 100.54 ± 10.61 100.75 ± 10.14 0.11

DBP (mm Hg) 64.91 ± 9.31 64.23 ± 9.38 64.18 ± 8.89 63.81 ± 9.09 63.89 ± 8.56 64.00 ± 8.89 0.013

TC (mmol/L) 3.96 ± 0.71 3.97 ± 0.73 4.04 ± 0.77 4.15 ± 0.83 4.25 ± 0.83 4.28 ± 0.77 < 0.0001

HDL-C (mmol/L) 1.46 ± 0.31 1.46 ± 0.32 1.45 ± 0.29 1.48 ± 0.30 1.51 ± 0.30 1.49 ± 0.30 0.0012

LDL-C (mmol/L) 1.94 ± 0.64 2.02 ± 0.60 2.14 ± 0.64 2.20 ± 0.63 2.26 ± 0.63 2.27 ± 0.58 < 0.0001

TG (mmol/L) 0.79 ± 0.43 0.80 ± 0.41 0.85 ± 0.48 0.84 ± 0.46 0.82 ± 0.45 0.78 ± 0.39 0.18

Fasting glucose (mmol/L) 4.47 ± 0.61 4.46 ± 0.60 4.48 ± 0.58 4.55 ± 0.53 4.61 ± 0.47 4.62 ± 0.42 < 0.0001

CMRS −0.27 ± 2.46 −0.25 ± 2.53 −0.09 ± 2.35 −0.26 ± 2.34 −0.30 ± 2.30 −0.22 ± 2.35 0.86

Physical activity (MET/week) 608.3 ± 444.3 621.4 ± 490. 8 666.3 ± 592.7 620.0 ± 586.1 605.8 ± 613.0 676.4 ± 723.9 0.55

Energy (kcal/day) 1268.6 ± 529.1 1281.9 ± 594.2 1326.8 ± 626.0 1274.8 ± 582.0 1217.1 ± 560.3 1152.5 ± 523.4 0.0018

Refined grains (gram/100 kcal/day) 1.60 ± 2.54 1.62 ± 3.63 1.93 ± 4.40 3.21 ± 6.18 3.64 ± 6.12 3.39 ± 6.22 < 0.0001

Seafood (gram/100 kcal/day) 0.44 ± 1.61 0.96 ± 2.37 1.56 ± 2.93 2.72 ± 3.90 4.19 ± 4.97 5.17 ± 4.86 < 0.0001

Fried foods (gram/100 kcal/day) 1.96 ± 2.37 1.15 ± 2.11 0.66 ± 1.85 0.28 ± 1.16 0.12 ± 0.62 0.04 ± 0.43 < 0.0001

Sugar-sweetened beverages
(gram/100 kcal/day)

3.39 ± 5.07 2.84 ± 5.37 1.85 ± 4.47 1.28 ± 4.14 0.58 ± 2.48 0.23 ± 2.09 < 0.0001

Rice (gram/100 kcal/day) 3.97 ± 2.82 4.98 ± 4.19 6.32 ± 5.08 9.08 ± 6.73 11.21 ± 8.67 12.60 ± 6.61 < 0.0001

Wheat (gram/100 kcal/day) 7.28 ± 3.99 6.98 ± 4.48 6.41 ± 5.06 5.03 ± 4.91 3.47 ± 3.79 2.33 ± 2.44 < 0.0001

Fungi and algae (gram/100 kcal/day) 0.95 ± 1.32 0.69 ± 1.29 0.45 ± 1.25 0.32 ± 0.85 0.21 ± 0.77 0.08 ± 0.37 < 0.0001

Roots and tubers (gram/100 kcal/day) 2.76 ± 2.62 2.30 ± 3.01 1.71 ± 2.89 1.19 ± 2.56 0.72 ± 1.92 0.39 ± 1.23 < 0.0001

Red meat other than pork
(gram/100 kcal/day)

0.24 ± 0.94 0.41 ± 1.27 0.67 ± 1.88 1.00 ± 2.29 1.30 ± 2.31 2.06 ± 2.95 < 0.0001

Protein intake (g/100 Kcal/day) 3.97 ± 0.81 4.10 ± 0.97 4.21 ± 1.04 4.39 ± 1.19 4.82 ± 1.22 5.17 ± 1.38 < 0.0001

Fat intake (g/100 Kcal/day) 3.03 ± 1.07 3.03 ± 1.16 2.92 ± 1.23 2.92 ± 1.21 2.93 ± 1.07 2.92 ± 0.99 0.0084

Carbohydrate intake (g/100 Kcal/day) 14.40 ± 2.58 14.24 ± 2.83 14.35 ± 3.07 14.20 ± 3.13 13.74 ± 2.90 13.35 ± 2.93 < 0.0001

Fibre intake (g/100 Kcal/day) 0.65 ± 0.36 0.58 ± 0.39 0.52 ± 0.32 0.48 ± 0.30 0.46 ± 0.25 0.43 ± 0.23 < 0.0001

Vitamin C intake (mg/100 Kcal/day) 3.15 ± 2.11 3.23 ± 2.58 3.11 ± 2.55 3.27 ± 2.88 3.45 ± 2.69 3.41 ± 2.57 0.0164

Vitamin E intake (mg/100 Kcal/day) 0.31 ± 0.26 0.29 ± 0.21 0.26 ± 0.16 0.26 ± 0.17 0.25 ± 0.15 0.26 ± 0.16 < 0.0001

Carotene intake (ug/100 Kcal/day) 73.42 ± 64.62 73.52 ± 83.18 72.64 ± 79.47 79.83 ± 95.19 83.16 ± 99.95 78.82 ± 82.90 0.0055

Magnesium intake (mg/100 Kcal/day) 15.19 ± 3.51 14.94 ± 3.59 14.77 ± 3.78 14.72 ± 3.77 15.12 ± 3.91 15.44 ± 4.15 0.99

Potassium intake (mg/100 Kcal/day) 102.00 ± 26.22 100.95 ± 32.25 97.17 ± 31.47 99.02 ± 35.06 102.44 ± 33.10 104.67 ± 32.89 0.55

Phosphorus intake (mg/100 Kcal/day) 58.39 ± 10.29 59.32 ± 12.05 60.12 ± 13.49 62.13 ± 15.07 65.51 ± 14.03 68.70 ± 16.19 < 0.0001

Calcium intake (mg/100 Kcal/day) 30.84 ± 13.12 30.61 ± 14.84 29.41 ± 15.20 30.01 ± 18.41 30.53 ± 15.54 31.44 ± 15.90 0.90

Iron intake (mg/100 Kcal/day) 1.39 ± 1.05 1.24 ± 0.88 1.14 ± 0.54 1.14 ± 0.52 1.14 ± 0.35 1.16 ± 0.29 < 0.0001

Sex 0.0001

Boys 384 (44.6)§ 481 (47.1) 654 (49.2) 708 (49.9) 414 (53.6) 155 (51.8)

Girls 477 (55.4) 540 (52.9) 674 (50.8) 712 (50.1) 359 (46.4) 144 (48.2)

Grade 0.0001

Two 217 (25.2) 276 (27.0) 385 (29.0) 431 (30.4) 212 (27.4) 96 (32.1)

Three 209 (24.3) 291 (28.5) 381 (28.7) 380 (26.8) 205 (26.5) 73 (24.4)

Four 231 (26.8) 267 (26.2) 362 (27.3) 384 (27.0) 231 (29.9) 88 (29.4)
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Table 1 Baseline characteristics by healthy diet score (Continued)

Healthy Diet Score* P value†

≤3 (n = 861) 4 (n = 1021) 5 (n = 1328) 6 (n = 1420) 7 (n = 773) ≥8 (n = 299)

Five 204 (23.7) 187 (18.3) 200 (15.1) 225 (15.8) 125 (16.2) 42 (14.0)

Puberty 0.12

Yes 782 (90.8) 931 (91.2) 1239 (93.3) 1316 (92.7) 711 (92.0) 278 (93.0)

No 79 (9.2) 90 (8.8) 89 (6.7) 104 (7.3) 62 (8.0) 21 (7.0)

Birth weight 0.42

< 2500 g 31 (3.6) 27 (2.6) 50 (3.8) 56 (3.9) 23 (3.0) 10 (3.3)

2500–3999 g 696 (80.8) 793 (77.7) 1048 (78.9) 1114 (78.5) 635 (82.1) 244 (81.6)

≥ 4000 g 77 (8.9) 118 (11.6) 129 (9.7) 119 (8.4) 47 (6.1) 21 (7.0)

Missing 57 (6.6) 83 (8.1) 101 (7.6) 131 (9.2) 68 (8.8) 24 (8.0)

Mother’s BMI 0.0008

< 24 kg/m2 641 (74.4) 765 (74.9) 980 (73.8) 1113 (78.4) 587 (75.9) 258 (86.3)

24–27.9 kg/m2 159 (18.5) 176 (17.2) 235 (17.7) 203 (14.3) 136 (17.6) 25 (8.4)

≥ 28 kg/m2 24 (2.8) 28 (2.7) 40 (3.0) 22 (1.5) 15 (1.9) 6 (2.0)

Missing 37 (4.3) 52 (5.1) 73 (5.5) 82 (5.8) 35 (4.5) 10 (3.3)

Father’s BMI < 0.0001

< 24 kg/m2 433 (50.3) 515 (50.4) 641 (48.3) 769 (54.2) 459 (59.4) 173 (57.9)

24–27.9 kg/m2 307 (35.7) 346 (33.9) 494 (37.2) 477 (33.6) 217 (28.1) 102 (34.1)

≥ 28 kg/m2 84 (9.8) 108 (10.6) 120 (9.0) 92 (6.5) 62 (8.0) 14 (4.7)

Missing 37 (4.3) 52 (5.1) 73 (5.5) 82 (5.8) 35 (4.5) 10 (3.3)

Mother’s education < 0.0001

< 7 years 132 (15.3) 135 (13.2) 151 (11.4) 163 (11.5) 65 (8.4) 11 (3.7)

7–12 years 530 (61.6) 606 (59.4) 804 (60.5) 835 (58.8) 464 (60.0) 191 (63.9)

≥ 13 years 144 (16.7) 205 (20.1) 274 (20.6) 315 (22.2) 188 (24.3) 82 (27.4)

Missing 55 (6.4) 75 (7.3) 99 (7.5) 107 (7.5) 56 (7.2) 15 (5.0)

Father’s education < 0.0001

< 7 years 80 (9.3) 69 (6.8) 101 (7.6) 80 (5.6) 36 (4.7) 7 (2.3)

7–12 years 552 (64.1) 658 (64.4) 835 (62.9) 851 (59.9) 467 (60.4) 194 (64.9)

≥ 13 years 180 (20.9) 223 (21.8) 297 (22.4) 385 (27.1) 214 (27.7) 85 (28.4)

Missing 49 (5.7) 71 (7.0) 95 (7.2) 104 (7.3) 56 (7.2) 13 (4.3)

Household income per month < 0.0001

< 750 RMB 108 (12.5) 145 (14.2) 153 (11.5) 149 (10.5) 67 (8.7) 13 (4.3)

751–1500 RMB 317 (36.8) 339 (33.2) 420 (31.6) 414 (29.2) 199 (25.7) 70 (23.4)

1501–2500 RMB 217 (25.2) 246 (24.1) 336 (25.3) 335 (23.6) 204 (26.4) 91 (30.4)

≥ 2501 RMB 150 (17.4) 208 (20.4) 307 (23.1) 400 (28.2) 243 (31.4) 110 (36.8)

Missing 69 (8.0) 83 (8.1) 112 (8.4) 122 (8.6) 60 (7.8) 15 (5.0)

Intervention < 0.0001

No 288 (33.4) 440 (43.1) 695 (52.3) 729 (51.3) 361 (46.7) 116 (38.8)

Yes 573 (66.6) 581 (56.9) 633 (47.7) 691 (48.7) 412 (53.3) 183 (61.2)

BMI, body mass index; CMRS, cardiometabolic risk score; DBP, diastolic blood pressure; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein
cholesterol; MAP, mean arterial pressure; SBP, systolic blood pressure; TC, total cholesterol; TG, triglyceride
*HDS was computed by summing sub-scores with each of the leading dietary predictors as one point according to their associations with CMRS. For example,
more than the median intake of fruit was scored as 1 and equal or less as 0, if fruit intake was inversely associated with CMRS
†ANOVA was used to test the difference of continuous variables across healthy diet score and Chi-square for categorical variables
‡All such data were mean ± standard deviation
§All such data were frequency (percentage)
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External validation
We examined the association of HDS with available
CMR factors among 4530 children aged 6–13 years from
CHNS. Baseline HDS was inversely associated with BMI,
WC, SBP, DBP, and MAP at baseline and the change in
DBP (Table S10).

Discussion
In this longitudinal analysis of children with large
sample size, we found the nine leading healthy dietary
determinants for CMRS were diets low in refined grains,
fried foods, SSBs, wheat, fungi and algae, and roots and
tubers, and high in seafood, rice, and red meat other
than pork. We created an HDS based on these leading
determinants that were shown to be a strong predictor
for changes in 10 out of 14 CMR factors examined. The
inverse association between HDS and CMRS was more
likely to be evident in children whose parents had high
education. The predictive ability of our HDS on several
CMRS factors was validated in children from CHNS.
Previous studies have shown that diets high in gly-

cemic index are associated with high CMR in children
[29]. Our findings agree with these studies showing that
high consumption of refined grains, fried foods, SSBs,
roots and tubers, or wheat was associated with a higher
increase in CMRS. The positive association between
SSBs intake and CMR factors has been reported in many
studies [16, 17, 30]. Although refined grains and wheat
were not linked to CMR factors in children, their harm-
ful effect on CMR has been reported in adults [31].

Foods being fried have lower nutrients and higher en-
ergy density than those being boiled or steamed [32, 33].
Several cohort studies in adults showed that higher con-
sumption of fried foods was associated with an increased
risk of obesity, type 2 diabetes, and cardiovascular
diseases [34, 35]. Our study supports the dietary guide-
lines that diets low in glycemic index are beneficial for
the prevention of CMR factors.
Seafood, rice, and red meat other than pork are major

sources of protein that plays an important role in child
growth and development. High consumption of fish has
been recommended for the prevention of CMR factors
in adults because fish is rich in protein, omega-3 fatty
acids, and minerals [12, 13]. Our further analysis shows
that red meat other than pork intake was only signifi-
cantly associated with two (pork and milk) out of 25
food groups (Table S11). The intake of pork and milk
was not a significant predictor of CMRS suggesting that
the red meat other than pork intake was independently
associated with CMRS. Processed but not unprocessed
red meat is associated with an increased risk of obesity
and related CMR in previous studies suggesting that un-
processed red meat other than pork may be considered
as part of a healthy balanced diet in children considering
its high contents in protein [36]. Compared with the
harmful effect of high wheat intake, high rice (white and
brown) intake resulted in a beneficial change in CMRS
in our study, which may be partly due to the difference
in nutrient composition between rice and wheat [21].
The divergent associations of rice and wheat intake with

Fig. 2 Leading dietary determinants for changes in cardiometabolic risk scores in children. This figure shows the contribution of the total
variance in percentage by leading dietary determinants (selected from 26 food groups). Machine learning models including general linear
regression model, random forest, and gradient boost machine were used to analyze the importance of dietary predictors for CMRS. Random
forest had the highest prediction performance and this figure shows the leading dietary determinants derived from the random forest
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Table 2 Changes in cardiometabolic risk score during follow-up associated with dietary intakes at baseline

Low intake
(gram/100 kcal/day)

High intake
(gram/100 kcal/day)

P-value*

Refined grains 0 > 0

Participants 1453 3361

CMRS†, Model 1‡ −0.24 ± 0.12§ − 0.03 ± 0.12 0.0024

CMRS, Model 2 − 0.12 ± 0.12 0.07 ± 0.11 0.0074

CMRS, Model 3 0.01 ± 0.14 0.21 ± 0.14 0.0058

Seafood 0 > 0

Participants 2571 2243

CMRS, Model 1 0.09 ± 0.11 − 0.37 ± 0.12 < 0.0001

CMRS, Model 2 0.22 ± 0.11 − 0.25 ± 0.11 < 0.0001

CMRS, Model 3 0.32 ± 0.14 − 0.14 ± 0.14 < 0.0001

Fried wheat/rice 0 > 0

Participants 3892 922

CMRS, Model 1 −0.22 ± 0.12 0.34 ± 0.13 < 0.0001

CMRS, Model 2 − 0.09 ± 0.11 0.34 ± 0.13 < 0.0001

CMRS, Model 3 0.04 ± 0.14 0.45 ± 0.15 < 0.0001

SSBs 0 > 0

Participants 3472 1342

CMRS, Model 1 −0.17 ± 0.12 0.07 ± 0.13 0.0008

CMRS, Model 2 −0.05 ± 0.11 0.18 ± 0.12 0.0007

CMRS, Model 3 0.08 ± 0.14 0.33 ± 0.15 0.0004

Wheat ≦4.66 > 4.66

Participants 3048 1766

CMRS, Model 1 −0.21 ± 0.12 0.07 ± 0.12 < 0.0001

CMRS, Model 2 − 0.05 ± 0.11 0.10 ± 0.12 0.0182

CMRS, Model 3 0.08 ± 0.14 0.22 ± 0.14 0.0433

Red meat other than pork ≦0.01 > 0.01

Participants 3394 1420

CMRS, Model 1 −0.03 ± 0.12 − 0.28 ± 0.12 0.0005

CMRS, Model 2 0.10 ± 0.11 − 0.19 ± 0.12 < 0.0001

CMRS, Model 3 0.23 ± 0.14 − 0.05 ± 0.14 < 0.0001

Rice ≦5.99 > 5.99

Participants 1109 3705

CMRS, Model 1 0.33 ± 0.13 − 0.25 ± 0.12 < 0.0001

CMRS, Model 2 0.46 ± 0.13 − 0.12 ± 0.11 < 0.0001

CMRS, Model 3 0.54 ± 0.15 − 0.01 ± 0.14 < 0.0001

Root and tuber ≦2.29 > 2.29

Participants 2711 2103

CMRS, Model 1 −0.14 ± 0.12 0.00 ± 0.13 0.0635

CMRS, Model 2 −0.00 ± 0.11 0.05 ± 0.12 0.41

CMRS, Model 3 0.14 ± 0.14 0.17 ± 0.14 0.63

Fungi and mushroom 0 > 0

Participants 3244 1570

CMRS, Model 1 −0.16 ± 0.12 0.03 ± 0.12 0.0058
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CMRS may also be attributable to the fact that they are
associated with different dietary patterns. For example,
we found high rice intake was associated with a higher
intake of vegetables, fish, and poultry and a lower intake
of fried foods, beverages, refined grains, and edible fun-
gus and algae (Table S12). In contrast, high wheat intake
was associated with a higher intake of fried foods,
refined grains, roots and tubers, and a lower intake of
fish, pork, milk, and vegetables (Table S13). Our findings
highlight the importance of high consumption of
seafood, rice, and red meat other than pork on the
prevention of CMR factors in children.
The association between mushroom consumption and

CMR factors is inconsistent between studies with the
largest longitudinal study showing no significant associ-
ation [37, 38]. The association of edible fungus and algae
with CMR is less known. The positive association of
fungi and algae with CMR factors in our study may be
partly attributed to the harmful constituents in some of
them [39]. However, more research needs to warrant
our findings.
Dietary patterns derived by posterior methods includ-

ing principal component analysis, cluster analysis, and
latent class analysis have been linked to CMR factors in
children [15–17, 40]. These studies showed that Western
dietary pattern, high energy-dense pattern, or sweet diet-
ary pattern were associated with high CMR [15–17],
whereas vegetable and the wholemeal pattern was
associated with favorable changes in CMR factors [40].
Although these findings may imply which food groups
are associated with CMR factors, these dietary patterns
can hardly be obtained in other studies. In contrast,
priori patterns based on dietary guidelines may be
applied to different studies and the findings are compar-
able [18]. An inverse association between adherence to
Dietary Approaches to Stop Hypertension (DASH)

Dietary Pattern or Mediterranean pattern and CMR has
been observed in some studies [41, 42], but not in other
studies [18, 43]. Therefore, establishing an efficient HDS
based on evidence to predict CMR factors in children is
urgent. Our HDS created based on the leading determi-
nants of CMRS was strongly associated with 10 out of
14 CMR factors. Although no significant association of
baseline HDS with baseline CMRS was observed, both
high baseline HDS and improved HDS were associated
with favorable changes in most CMR factors in our
study. Furthermore, validation analysis in children from
CHNS showed that higher baseline HDS was associated
with lower BMI, WC, SBP, DBP, and MAP in the cross-
sectional analysis and a lower increase in DBP only in
the longitudinal analysis. The weak association between
HDS and CMR factors in the longitudinal analysis might
be due to the small variation of HDS and small available
sample size in some HDS subgroups. We found higher
parental education and higher HDS resulted in more
decrease in CMRS suggesting the importance of the in-
volvement of parents with high education and children
whose parents with low education are more needed in
care.
The strengths of the present study included the large

sample size and the measurement of multiple CMR fac-
tors and dietary intakes assessed at both baseline and
follow-up. To our knowledge, this is the first study to
identify leading dietary determinants of CMRS in chil-
dren using machine learning techniques. We also cre-
ated an HDS based on medians of leading determinants
that were strongly predictive of most CMR factors. This
score was also validated in children from CHNS. The
study has several limitations. Firstly, 24 h of food records
are limited by not accounting for seasonal variation of
dietary intakes especially fruits and vegetables. However,
the dietary intakes are comparable between individuals

Table 2 Changes in cardiometabolic risk score during follow-up associated with dietary intakes at baseline (Continued)

Low intake
(gram/100 kcal/day)

High intake
(gram/100 kcal/day)

P-value*

CMRS, Model 2 −0.04 ± 0.11 0.12 ± 0.12 0.0195

CMRS, Model 3 0.10 ± 0.14 0.25 ± 0.14 0.0212

Nuts and legumes 0 > 0

Participants 1946 2868

CMRS, Model 1 −0.16 ± 0.12 − 0.07 ± 0.12 0.17

CMRS, Model 2 − 0.00 ± 0.11 0.02 ± 0.11 0.79

CMRS, Model 3 0.13 ± 0.14 0.15 ± 0.14 0.78
*The change in CMRS was calculated by subtracting the result at baseline from that at follow-up
†GLM was used to estimate multivariable-adjusted means and standard errors of cardiometabolic risk factors between quintiles. Benjamin-Hochberg’s procedure
was used to control the false discovery rate at level 5% for multiple comparisons with the P-value cut-off point of significance was 0.0233 for change in CMRS
(Model 3)
‡Model 1 was adjusted for classes in school as clustering effects and characteristics of individuals including age, sex, and corresponding CMR factor at baseline as
fixed effects; Model 2 was adjusted for Model 1 plus puberty, grade, intervention, BMI, physical activity, and energy intake at baseline as fixed effects; Model 3
was adjusted for Model 2 plus birthweight, household income, mother’s education, father’s education, mother’s BMI, and father’s BMI as fixed effects
§All these data are means ± standard errors of change in CMRS
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given all data were collected in May of the year. Further-
more, our HDS was validated in a Chinese population,
but whether HDS was predictive of CMR needs to be
examined in other ethnic groups. The validation dataset
is also limited by only having several CMR factors
measured at baseline and follow-up, which makes it im-
possible to compute CMRS. Thirdly, several food items
such as algae and fungi were not frequently consumed
by people in countries other than Asia therefore the
HDS was not applied to these populations. However,

nuts, milk, and vegetables (11th, 12th, and 13th leading
predictors in our study) instead of these food items may
be included in the calculation of the HDS. Fourthly, the
importance of an individual food for the CMRS is deriv-
ing partly from that food but also from other foods it is
correlated with, which was not accounted for in our ma-
chine learning analysis. Fithly, the follow-up period of
our study (one year) is relatively short to judge the effect
of dietary factors on change in CMR, therefore longitu-
dinal studies with long-term follow-up are needed to

Fig. 3 Associations between healthy diet score and changes in cardiometabolic risk score modified by parental education. CMRS, cardiometabolic
risk score; SD, standard deviation. The general linear regression model was used to test the interaction adjusted for classes in schools as random
effects and characteristics of the individuals including age, sex, intervention, grade, puberty, BMI, physical activity, CMRS, and intake of energy,
fiber, vegetable, fruit, pork, legumes, and nuts at baseline, birth weight, breastfeeding, household income, or parental BMI and education. We
examined whether the association between healthy diet score and CMRS was modified by sex, grade, birthweight, household income, parental
BMI, and parental education and a significant interaction were observed only for healthy diet score and parental education. *represents there is a
significant association between healthy diet score and change in CMRS
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warrant our findings. Finally, because of the observa-
tional nature of the analysis in the present study, causal
relations could not be established based on our findings.

Conclusions
Diets high in seafood, rice, and red meat other than pork
and low in refined grains, fried foods, SSBs, wheat, fungi
and algae, roots and tubers are leading healthy diet
factors for changes in CMR factors in children. HDS
based on these leading dietary determinants is strongly
predictive of CMR factors.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12937-020-00611-2.
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